TITLE

A simple low-temperature ultrahigh-vacuum scanning tunneling microscope capable of atomic

AUTHOR(S)
Meyer, Gerhard
PUB. DATE
August 1996
SOURCE
Review of Scientific Instruments;Aug1996, Vol. 67 Issue 8, p2960
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Details the design of a low-temperature scanning tunneling microscope (STM). Main features including a scanner and the provision for extension of the microscope to work as a force microscope using the optical lever detection technique for force measurement.
ACCESSION #
4376490

 

Related Articles

  • An improved control technique for the electrochemical fabrication of scanning tunneling microscopy microtips Hu Xiaotang; Liu Wenhui; Ji Guijun; Liu Anwei // Review of Scientific Instruments;Oct97, Vol. 68 Issue 10, p3811 

    Presents an improved feedback control technique for the direct current (dc) electrochemical fabrication of scanning tunneling microscopy microtips. Use of the etching current as the only control signal; Electrochemical etching process; Differential feedback control method.

  • Simple, variable-temperature, scanning tunneling microscope. Dubson, M. A.; Hwang, Jeeseong // Review of Scientific Instruments;Jul1992, Vol. 63 Issue 7, p3643 

    We describe a simple scanning tunneling microscope (STM) which works well from room temperature to 4 K. It is relatively easy to build, repair, or modify, and works very reliably. An unusual feature of our STM is that it is assembled without glues or solders. A list of suppliers of the...

  • Reliable and versatile scanning tunneling microscope. Kaiser, W. J.; Jaklevic, R. C. // Review of Scientific Instruments;Apr88, Vol. 59 Issue 4, p537 

    A new scanning tunneling microscope (STM) system is described that has been operated in several environments for both topographic imaging and tunnel spectroscopy. This STM shows high resistance to the effects of vibration and thermal drift. The device is unique in its simplicity and has only...

  • A [sup 3]He refrigerated scanning tunneling microscope in high magnetic fields and ultrahigh vacuum. Kugler, M.; Renner, Ch.; Fischer, O&slash;.; Mikheev, V.; Batey, G. // Review of Scientific Instruments;Mar2000, Vol. 71 Issue 3 

    We present a scanning tunneling microscope (STM) designed to operate between 275 mK and room temperature, in magnetic fields up to 14 T and in ultrahigh vacuum (UHV). The system features a compact STM connected to an UHV compatible [sup 3]He refrigerator fitting into a bottom loading cryostat...

  • A scanner for an ultrahigh-vacuum low-temperature scanning tunneling microscope. Loginov, B.; El’tsov, K.; Zaitsev-Zotov, S.; Klimov, A.; Shevlyuga, V. // Instruments & Experimental Techniques;May2007, Vol. 50 Issue 3, p422 

    A scanner for an ultrahigh-vacuum low-temperature scanning tunneling microscope is described. It has a high resonance frequency (>30 kHz) and a small thermal-drift rate (≤1 nm/°C) at room temperature. The scanner feeds the tip to the sample at a distance of up to 3 mm and positions it...

  • A low-temperature ultrahigh-vacuum scanning tunneling microscope with rotatable magnetic field Wittneven, Chr.; Dombrowski, R.; Pan, S.H.; Wiesendanger, R. // Review of Scientific Instruments;Oct97, Vol. 68 Issue 10, p3806 

    Discusses the design of a low-temperature ultrahigh-vacuum scanning tunneling microscope setup with a combination of a solenoid and a split-pair magnet. Operation of the scanning tunneling microscope at temperatures down to 8K and in a rotatable magnetic field of up to 1 T; Topographic and...

  • A simple low-current scanning tunneling microscope. Dhirani, A.; Fisher, A.J.; Guyot-Sionnest, P. // Review of Scientific Instruments;Aug1996, Vol. 67 Issue 8, p2953 

    Presents a rigid scanning tunneling microscope (STM) design with an implemented two-dimensional approach. Description of a current-voltage converter optimized for low-current applications; Capabilities of the microscope; Goal in designing the STM of studying self-assembled monolayers.

  • Scanning tunneling microscope with a rotary piezoelectric stepping motor. Yakimov, V. N. // Review of Scientific Instruments;Feb1996, Vol. 67 Issue 2, p384 

    Describes the development of a compact scanning tunneling microscope (STM) with a novel rotary piezoelectric stepping motor for coarse positioning. Inertial slip-stick positioners; STM design; Tip to sample approaching.

  • A scanning tunneling microscope based on a motorized micrometer. Stupian, Gary W.; Leung, Martin S. // Review of Scientific Instruments;Feb1989, Vol. 60 Issue 2, p181 

    A scanning tunneling microscope (STM) that uses a motorized micrometer to provide for coarse mechanical motion of the specimen relative to the tunneling tip is described. The specimen is attached directly to the micrometer spindle. No additional motion reduction mechanisms, such as levers, are...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics