Estimation of thermal noise in the mirrors of laser interferometric gravitational wave detectors:

Nakagawa, N.; Auld, B.A.; Gustafson, Eric; Fejer, M.M.
September 1997
Review of Scientific Instruments;Sep97, Vol. 68 Issue 9, p3553
Academic Journal
Presents a general formula and a computational scheme for estimating the power spectrum of the displacement correlation function of suspended test masses such as those used in interferometric gravitational wave detectors. Application of the fluctuation-dissipation theorem directly to the displacement correlation; Advantage of the Green's function method.


Related Articles

  • Status of the Australian Consortium for Interferometric Gravitational Astronomy. McClelland, D. E.; Gray, M. B.; Shaddock, D. A.; Slagmolen, B. J.; Scott, S. M.; Charlton, P.; Whiting, B. J.; Sandeman, R. J.; Blair, D. G.; Ju, L.; Winterflood, J.; Greenwood, D.; Benabid, F.; Baker, M.; Zhou, Z.; Mudge, D.; Ottaway, D.; Ostermeyer, M.; Veitch, P. J.; Munch, J. // AIP Conference Proceedings;2000, Vol. 523 Issue 1, p140 

    We report progress on the development of gravitational wave research facilities by the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) and significant R&D advances across the four major subsystems related to an interferometric gravitational wave detector:...

  • TAMA project: Design and current status. Ando, Masaki; Tsubono, Kimio // AIP Conference Proceedings;2000, Vol. 523 Issue 1, p128 

    Examines the design and status of TAMA, a project to construct and operate an interferometric gravitational-wave detector in Tokyo, Japan. Development of techniques for large-scale interferometers; Detection of gravitational waves generated within the galaxy; Details on the target strain...

  • The status of GEO600. Lu¨ck, Harald; Aufmuth, P.; Brozek, O. S.; Danzmann, K.; Freise, A.; Goßler, S.; Grado, A.; Grote, H.; Mossavi, K.; Quetschke, V.; Willke, B.; Kawabe, K.; Ru¨diger, A.; Schilling, R.; Winkler, W.; Zhao, Ch.; Strain, K. A.; Cagnoli, G.; Casey, M.; Hough, J. // AIP Conference Proceedings;2000, Vol. 523 Issue 1, p119 

    GEO600, the German/British gravitational wave detector currently being built in northern Germany, used advanced optical technologies to obtain a sensitivity comparable with the other, bigger detectors currently being built [1,2]. The installation of the ultra-high-vacuum system has almost been...

  • Status of the VIRGO experiment. Marion, Fre´de´rique // AIP Conference Proceedings;2000, Vol. 523 Issue 1, p110 

    The status of the VIRGO experiment as of fall 1999 is presented here: progress in the construction is reported and next steps are outlined. © 2000 American Institute of Physics.

  • The Glasgow 10 m prototype laser interferometric gravitational wave detector. Robertson, D.I.; Morrison, E.; Hough, J.; Killbourn, S.; Meers, B.J.; Newton, G.P.; Robertson, N.A.; Strain, K.A.; Ward, H. // Review of Scientific Instruments;Sep95, Vol. 66 Issue 9, p4447 

    Presents a description of the prototype interferometric gravitational wave detector at Glasgow. General overview of the apparatus and its mode of operation; Technical features of the instrument; Main optical components of the detector.

  • LIGO end-to-end simulation program. Bhawal, B.; Cella, G.; Evans, M.; Klimenko, S.; Maros, E.; Mohanty, S. D.; Rakhmanov, M.; Savage, R. L.; Yamamoto, H. // AIP Conference Proceedings;2000, Vol. 523 Issue 1, p469 

    A time-domain simulation program has been developed to provide an accurate description of interferometric gravitational wave detectors. This is being utilized to build a model of LIGO with the aim of aiding in the shakedown and integration of the interferometer subsystems, and ultimately the...

  • Spectral Tail of a Gravity Wave Train Propagating in a Shearing Background. Pulido, Manuel; Caranti, Giorgio // Journal of the Atmospheric Sciences;5/1/2000, Vol. 57 Issue 9, p1473 

    Presents information on a study which determined the causes of the appearance of a tail in the power spectrum of a gravity wave train in a shearing background terminating under the Hodges condition. Spectral analysis of the generated profiles; Analysis of an observed profile; Conclusions.

  • A quantum-enhanced prototype gravitational-wave detector. Goda, K.; Miyakawa, O.; Mikhailov, E. E.; Saraf, S.; Adhikari, R.; McKenzie, K.; Ward, R.; Vass, S.; Weinstein, A. J.; Mavalvala, N. // Nature Physics;Jun2008, Vol. 4 Issue 6, p472 

    The quantum nature of the electromagnetic field imposes a fundamental limit on the sensitivity of optical precision measurements such as spectroscopy, microscopy and interferometry. The so-called quantum limit is set by the zero-point fluctuations of the electromagnetic field, which constrain...

  • Invited Review Article: Interferometric gravity wave detectors. Cella, G.; Giazotto, A. // Review of Scientific Instruments;Oct2011, Vol. 82 Issue 10, p101101 

    A direct detection of gravitational waves is still lacking today. A network of several earthbound interferometric detectors is currently operating with a continuously improving sensitivity. The window of interest for observation has a lower cut off in the frequency domain below some tens of...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics