TITLE

Surface reconstruction phase diagram and growth on GaAs(111)B substrates by molecular beam epitaxy

AUTHOR(S)
Yang, K.; Schowalter, L.J.
PUB. DATE
April 1992
SOURCE
Applied Physics Letters;4/13/1992, Vol. 60 Issue 15, p1851
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Describes the surface reconstruction phases of gallium arsenide (111) B substrates grown by molecular beam epitaxy. Use of reflection high-energy electron diffraction pattern; Determination of equation for boundaries separating reconstruction phase zones; Dependence of surface morphology and crystal quality on growth condition.
ACCESSION #
4250493

 

Related Articles

  • Air stabilized (001) p-type GaAs fabricated by molecular beam epitaxy with reduced surface state.... Yan, D.; Look, E. // Applied Physics Letters;7/11/1994, Vol. 65 Issue 2, p186 

    Investigates undoped/p-type gallium arsenide (GaAs) structures fabricated by molecular beam epitaxy with reduced surface state density. Rationale for the temperature dependence of the measured barrier height; Changes in the surface defect nature; Observation of Fermi level pinning at values...

  • Periodic faceting on vicinal GaAs(110) surfaces during epitaxial growth. Krishnamurthy, M.; Wassermeier, M.; Williams, D.R.M.; Petroff, P.M. // Applied Physics Letters;4/19/1993, Vol. 62 Issue 16, p1922 

    Investigates the formation and evolution of quasiperiodic microfacets on vicinal gallium arsenide(110) surfaces grown by molecular beam epitaxy. Application of transmission electron microscopy and Monte Carlo simulations; Factors attributing to microfacet formation; Time evolution of facet...

  • Band bending and interface states for metals on GaAs. Viturro, R. E.; Shaw, J. L.; Mailhiot, C.; Brillson, L. J.; Tache, N.; McKinley, J.; Margaritondo, G.; Woodall, J. M.; Kirchner, P. D.; Pettit, G. D.; Wright, S. L. // Applied Physics Letters;6/13/1988, Vol. 52 Issue 24, p2052 

    We have used soft x-ray photoemission and optical emission spectroscopies to observe a broad range of Fermi level stabilization energies at metal interfaces with GaAs(100) surfaces grown by molecular beam epitaxy (MBE). The observed metal- and As-related interface cathodoluminescence plus...

  • Direct comparison of GaAs surface morphology between migration enhanced epitaxy and molecular.... Homma, Yoshikazu; Yamaguchi, Hiroshi // Applied Physics Letters;1/1/1996, Vol. 68 Issue 1, p63 

    Compares the surface morphology of gallium arsenide with the migration enhanced epitaxy (MEE) and molecular beam epitaxy. Use of in situ scanning electron microscopy; Factors affecting the high quality epitaxial layer; Sensitivity of secondary electron surface to surface morphology;...

  • Antimony passivation of molecular-beam epitaxially grown GaAs surfaces. Kerr, T. M.; Peacock, D. C.; Wood, C. E. C. // Journal of Applied Physics;3/1/1988, Vol. 63 Issue 5, p1494 

    Presents a study which examined antimony passivation of molecular beam epitaxially grown gallium arsenide surfaces. Problems with the thermal etching of gallium arsenide as a technique for liquid- and vapor-phase epitaxy; Experimental details; Results.

  • Effects of substrate preparation conditions on GaAs oval defects grown by molecular beam epitaxy. Fujiwara, K.; Nishikawa, Y.; Tokuda, Y.; Nakayama, T. // Applied Physics Letters;3/17/1986, Vol. 48 Issue 11, p701 

    Effects of substrate preparation conditions, i.e., wet chemical and ultrahigh vacuum cleaning preparations, on GaAs oval defects grown by molecular beam epitaxy (MBE) were investigated. It is found that, with our MBE system, the presence of the smaller (<10 μm) ovally shaped defects without...

  • Nucleation and initial growth of GaAs on Si substrate. Rosner, S. J.; Koch, S. M.; Harris, J. S. // Applied Physics Letters;12/29/1986, Vol. 49 Issue 26, p1764 

    The microstructure of thin layers of GaAs grown on Si substrates at low growth temperatures by molecular beam epitaxy was examined using transmission electron microscopy and MeV 4He+ ion channeling angular scan analysis. Crystalline island formation is observed at temperatures as low as 325...

  • Device quality growth and characterization of (110) GaAs grown by molecular beam epitaxy. Allen, L. T. P.; Weber, E. R.; Washburn, J.; Pao, Y. C. // Applied Physics Letters;8/31/1987, Vol. 51 Issue 9, p670 

    Device quality (110)GaAs has been reproducibly grown by molecular beam epitaxy (MBE) for the first time. Angling of the substrate to expose stable, Ga-rich ledges on the (110) surface has been shown to be the necessary condition for two-dimensional growth. The layers exhibit a room-temperature...

  • Effect of substrate tilting on molecular beam epitaxial grown AlGaAs/GaAs lasers having very low threshold current densities. Chen, H. Z.; Ghaffari, A.; Morkoç, H.; Yariv, A. // Applied Physics Letters;12/21/1987, Vol. 51 Issue 25, p2094 

    Single quantum well, graded refractive index separate confinement heterostucture (SQW GRINSCH) lasers with well thicknesses in the range of 65–480 Å have been grown by molecular beam epitaxy (MBE) on (100) and off of (100) by 4° toward (111) A substrates. The threshold current...

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics