Photoconductive gain mechanism of quantum-well intersubband infrared detectors

Liu, H.C.
March 1992
Applied Physics Letters;3/23/1992, Vol. 60 Issue 12, p1507
Academic Journal
Presents a model to calculate photoconductive gain for quantum-well intersubband infrared detectors. Construction of a conventional theory for a uniform and homogeneous photoconductor; Inverse proportionality of photoconductive gain to the number of quantum wells; Independence of the detector-current responsivity to the number of wells.


Related Articles

  • Voltage-tunable dual-mode operation InAlAs/InGaAs quantum well Infrared photodetector for.... Wang, Y.H.; Li, Sheng S.; Ho, Pin // Applied Physics Letters;2/8/1993, Vol. 62 Issue 6, p621 

    Develops a photoconductive (PC) and photovoltaic (PV) dual-mode operation quantum well infrared photodetector (QWIP) using a lattice-matched system. Parameters of the quantum well and superlattice barrier; Formation of the mesa structure for the QWIP; Intersubband transitions for the PC and the...

  • Photoconductivity nonlinearity at high excitation power in quantum well infrared photodetectors. Ershov, M.; Liu, H.C. // Applied Physics Letters;1/27/1997, Vol. 70 Issue 4, p414 

    Examines the nonlinear photoconductivity at high excitation power in quantum well infrared photodetectors. Role of the electric potential redistribution in the photoconductivity nonlinearity; Effect of the decreased field on the photoexcited electron escape probability; Observation on the...

  • Enhanced photoconductive gain in quantum-well infrared photodetectors. Gadir, M. A.; Harrison, P.; Soref, R. A. // Applied Physics Letters;11/25/2002, Vol. 81 Issue 22, p4272 

    A quantum-mechanical scattering theory approach is taken to evaluate the capture probability from the continuum into the quantum wells in quantum-well infrared photodetectors. The calculations show that the capture probability is dependent on the well width, the barrier height, and bias. An...

  • Noise gain and operating temperature of quantum well infrared photodetectors. Liu, H.C. // Applied Physics Letters;11/30/1992, Vol. 61 Issue 22, p2703 

    Compares the noise gain associated with dark current and photoconductive gain in quantum well infrared photodetectors. Basis for the theoretical model; Empirical expression of electron escape probability; Factors attributed to the achievement of background limited infrared performance.

  • Polarization dependence of spectral transmission and photoconductive response of a p-doped multiple quantum well structure. Fenigstein, A.; Finkman, E.; Bahir, G.; Schacham, S. E. // Journal of Applied Physics;8/1/1994, Vol. 76 Issue 3, p1998 

    Presents information on a study which demonstrated a comparison between the optical transmission and the photoconductive response of p-type quantum well infrared photodetectors. Background of the study; Methodology of the study; Results and discussion.

  • Transient photocurrent overshoot in quantum-well infrared photodetectors. Letov, V.; Ershov, M.; Matsik, S. G.; Perera, A. G. U.; Liu, H. C.; Wasilewski, Z. R.; Buchanan, M. // Applied Physics Letters;9/24/2001, Vol. 79 Issue 13 

    We report a strongly nonexponential behavior of the transient photocurrent in quantum-well infrared photodetectors (QWIPs) in response to a step-like infrared illumination. The transient photocurrent displays an overshoot on the time scale 0.1–1 ms at low temperatures (T<70 K), exceeding...

  • Exchange interaction effects in quantum well infrared detectors and absorbers. Choe, J.-W.; O, Byungsung; Bandara, K. M. S. V.; Coon, D. D. // Applied Physics Letters;4/23/1990, Vol. 56 Issue 17, p1679 

    Infrared excitation energies between the ground-state subband and the first excited-state subband in quantum wells are analyzed including the effect of exchange interactions on the ground-state subband. Analytic and numerical calculations relevant to infrared absorption and infrared detection...

  • Two-color GaAs/(AlGa)As quantum well infrared detector with voltage-tunable spectral sensitivity.... Kheng, K.; Ramsteiner, M. // Applied Physics Letters;8/10/1992, Vol. 61 Issue 6, p666 

    Presents measurements on a GaAs:Si/(AlGa)As quantum well intersubband detector structure. Dependence of the photoresponse on bias voltage; Description of the detector structure; Similarity between frequency dependence of the theoretical absorption to calculated photoconductive responsivity.

  • Two-color infrared photodetector using GaAs/AlGaAs and strained InGaAs/AlGaAs multiquantum wells. Tsai, K.L.; Chang, K.H.; Lee, C.P.; Huang, K.F.; Tsang, J.S.; Chen, H.R. // Applied Physics Letters;6/28/1993, Vol. 62 Issue 26, p3504 

    Examines two-color infrared photodetector using GaAs/AlGaAs and strained InGaAs/AlGaAs multiquantum wells. Comparison between the quantum wells response peak; Fabrication of detectors to study bias dependent behavior; Explanation of the behavior using the current continuity concept.


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics