TITLE

Maskless patterning of silicon surface based on scanning tunneling microscope tip-induced

AUTHOR(S)
Sugimura, Hiroyuki; Yamamoto, Takuma
PUB. DATE
September 1994
SOURCE
Applied Physics Letters;9/19/1994, Vol. 65 Issue 12, p1569
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Examines the fabrication of silicon micropatterns through scanning tunneling microscopy (STM). Effects of potassium hydroxide solution etching on non-anodized surfaces; Details on the height of etched pattern and thickness of the anodic oxide; Impact of humidity on the area of anodization and spatial resolution of the silicon surface.
ACCESSION #
4207675

 

Related Articles

  • Fabrication of silicon nanostructures with a scanning tunneling microscope. Snow, E.S.; Campbell, P.M. // Applied Physics Letters;8/9/1993, Vol. 63 Issue 6, p749 

    Presents a method for fabricating silicon nanostructures with a scanning tunneling microscope. Involvement of direct chemical modification of hydrogen-passivated silicon surface; Mechanism of liquid etching for silicon nanostructures; Discussion on the lack of etch degradation in the modified...

  • Surface morphology of oxidized and ion-etched silicon by scanning tunneling microscopy. Feenstra, R. M.; Oehrlein, G. S. // Applied Physics Letters;7/15/1985, Vol. 47 Issue 2, p97 

    The surface morphology of silicon (100) wafers has been measured by scanning tunneling microscopy. Samples which were bombarded with low-energy argon ions are found to have an average root-mean-square roughness of 4.0 Â, and the surfaces are covered with characteristic 50Â-diam hillocks....

  • Scanning tunneling microscopy investigations of the Si(111) topography produced by etching in.... Hsiao, Gregor S.; Virtanen, Jorma A.; Penner, Reginald M. // Applied Physics Letters;8/23/1993, Vol. 63 Issue 8, p1119 

    Investigates the time evolution of the topography of an oxidized silicon (Si) surface immersed in an aqueous 40% NH[sub 4]F etching solution. Use of scanning tunneling microscopy; Production of Si pillars at shielded surface locations; Suppression of gas evolution and roughening by reductant...

  • Atomic-scale flattening of SiC surfaces by electroless chemical etching in HF solution with Pt catalyst. Arima, Kenta; Hara, Hideyuki; Murata, Junji; Ishida, Takeshi; Okamoto, Ryota; Yagi, Keita; Sano, Yasuhisa; Mimura, Hidekazu; Yamauchi, Kazuto // Applied Physics Letters;5/14/2007, Vol. 90 Issue 20, p202106 

    The authors present a method for flattening SiC surfaces with Pt as a catalyst in HF solution. The mechanism for flattening SiC surfaces is discussed. The flattened 4H-SiC(0001) surface is composed of alternating wide and narrow terraces with single-bilayer-height steps, which are induced by the...

  • Etching of screw dislocations in YBa[sub 2]Cu[sub 3]O[sub 7] films with a scanning tunneling.... Heyvaert, I.; Osquiguil, E. // Applied Physics Letters;7/6/1992, Vol. 61 Issue 1, p111 

    Analyzes the etching of screw dislocations in YBa[sub 2]Cu[sub 3]O[sub 7] films with a scanning tunneling microscope (STM). Importance of the bias voltage in the etching process; Factors attributing to the etching process; Advantages of using the STM technique.

  • Observation of pn junctions on implanted silicon using a scanning tunneling microscope. Hosaka, Sumio; Hosoki, Shigeyuki; Takata, Keiji; Horiuchi, Katsutada; Natsuaki, Nobuyoshi // Applied Physics Letters;8/8/1988, Vol. 53 Issue 6, p487 

    Si pn junctions fabricated by photoresist masked As+ implantation were observed using current imaging tunneling spectroscopy (CITS) in a scanning tunneling microscope (STM). Using the CITS, a specific bias was chosen to define n-type or p-type areas according to whether or not current flowed....

  • Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J. // Applied Physics Letters;5/14/1990, Vol. 56 Issue 20, p2001 

    The chemical modification of hydrogen-passivated n-Si (111) surfaces by a scanning tunneling microscope (STM) operating in air is reported. The modified surface regions have been characterized by STM spectroscopy, scanning electron microscopy (SEM), time-of-flight secondary-ion mass spectrometry...

  • Hydrogenated amorphous silicon studied by scanning tunneling microscopy. Wiesendanger, R.; Rosenthaler, L.; Hidber, H. R.; Güntherodt, H.-J.; McKinnon, A. W.; Spear, W. E. // Journal of Applied Physics;5/1/1988, Vol. 63 Issue 9, p4515 

    Presents a study which examined the local electronic properties, topographical and chemical structure of hydrogenated amorphous silicon by using scanning tunneling microscopy under ultrahigh vacuum conditions. Measurement of the local electronic properties of the hydrogenated amorphous silicon;...

  • Direct writing in Si with a scanning tunneling microscope. van Loenen, E. J.; Dijkkamp, D.; Hoeven, A. J.; Lenssinck, J. M.; Dieleman, J. // Applied Physics Letters;9/25/1989, Vol. 55 Issue 13, p1312 

    Using the W tip of a scanning tunneling microscope, indentations with diameters of 2–10 nm have been made directly in Si (110) and Si (001) surfaces. It is possible to create and image (‘‘write and read’’) arbitrary lines and bit patterns reproducibly with a...

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics