TITLE

Doping selective lateral electrochemical etching of GaN for chemical lift-off

AUTHOR(S)
Park, Joonmo; Kwang Min Song; Seong-Ran Jeon; Jong Hyeob Baek; Sang-Wan Ryu
PUB. DATE
June 2009
SOURCE
Applied Physics Letters;6/1/2009, Vol. 94 Issue 22, p221907
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
An electrochemical etching based on oxalic acid was developed for use in the chemical lift-off of GaN epitaxial structures. It was shown that only the Si-doped n-GaN layer was etched away, while the p-type and undoped GaN layers were not etched at all. The etch rate and the remaining structure were analyzed for various doping concentrations and etching voltages. A lateral etch rate of 12 μm/min was achieved under 60 V for n-type doping concentration of 8×1018 cm-3. This doping selective etching was used to lift-off a GaN epitaxial layer patterned into 300×300 μm2 squares.
ACCESSION #
41139423

 

Related Articles

  • Phosphorous doping in low temperature silicon molecular beam epitaxy. Friess, E.; Nutzel, J. // Applied Physics Letters;5/4/1992, Vol. 60 Issue 18, p2237 

    Examines the phosphorous doping with silicon molecular beam epitaxy using solid doping course based on evaporation of highly doped silicon. Adjustment of doping levels by coevaporation from the doping source and an undoped silicon source; Achievement of Bulklike Hall mobilities; Investigation...

  • Silver photodoping into Al–ZnSe for application to white light emitters. Lee, Hyun-Yong; Takai, Toshiaki; Yao, Takafumi // Applied Physics Letters;6/10/2002, Vol. 80 Issue 23, p4336 

    Room-temperature Ag photodoping into crystalline Al-doped ZnSe grown by molecular-beam epitaxy (MBE) has been achieved. A promising approach to apply to a patterned white light emitter has also been proposed. An Al-ZnSe with Ag islands was illuminated with a HeCd laser at 300 K and annealed in...

  • Heavy p-doping of ZnTe by molecular beam epitaxy using a nitrogen plasma source. Han, J.; Stavrinides, T.S.; Kobayashi, M.; Gunshor, R.L.; Hagerott, M.M.; Nurmikko, A.V. // Applied Physics Letters;2/22/1993, Vol. 62 Issue 8, p840 

    Demonstrates the heavy p-doping of zinc telluride (ZnTe) semiconductor by molecular beam epitaxy using a nitrogen plasma source. Importance for short wavelength visible-light-emitting devices; Characterization of doped ZnTe; Implication for the formation of ohmic contact to p-zinc selenide.

  • Effect of N doping on the structural properties of ZnSe epitaxial layers grown by molecular beam.... Petruzzello, J.; Gaines, J.; van der Sluis, P.; Olego, D.; Ponzoni, C. // Applied Physics Letters;3/29/1993, Vol. 62 Issue 13, p1496 

    Examines the effects of Nitrogen doping on the structural properties of ZnSe epitaxial layers grown by molecular beam epitaxy. Relaxation rate of comprehensive strain; Structure of misfit dislocation; Observance of the regular array of misfit dislocations.

  • Effect of low temperature postannealing on the hole density of C δ-doped GaAs and Al0.3Ga0.7As. Li, G.; Jagadish, C. // Applied Physics Letters;10/21/1996, Vol. 69 Issue 17, p2551 

    In C δ-doped GaAs and Al0.3Ga0.7As grown by metalorganic vapor phase epitaxy using trimethylaluminium as a doping precursor, 20%–50% of the C acceptors are not electrically active due to hydrogen passivation. These hydrogen passivated C acceptors can be activated by low temperature...

  • Novel shadow mask molecular beam epitaxial regrowth technique for selective doping. Gulden, K.H.; Wu, X.; Smith, J.S.; Kiesel, P.; Hofler, A.; Kneissl, M.; Riel, P.; Dohler, G.H. // Applied Physics Letters;6/14/1993, Vol. 62 Issue 24, p3180 

    Presents a molecular beam epitaxial regrowth technique for selective doping. Fabrication of n-i-p-i modulator structures; Use of silicon (Si) shadow mask for doping profiles; Influence of mechanical stability on Si mass.

  • Potential enhanced Sb and As doping in Si molecular beam epitaxy. Kubiak, R. A. A.; Leong, W. Y.; Parker, E. H. C. // Applied Physics Letters;3/15/1985, Vol. 46 Issue 6, p565 

    Potential enhanced doping (PED) is a method of enhancing the incorporation efficiency of certain low sticking coefficient dopants in Si molecular beam epitaxy, and obtaining precise control over profiles. The efficacy of PED is demonstrated for Sb, As (and Ga) doping, using elemental and III-V...

  • Deep Level Spectra of MBE-Grown ZnTe:Cr[sup 2+] Layers. Sadofyev, Yu. G.; Korshkov, M. V. // Semiconductors;May2002, Vol. 36 Issue 5, p493 

    ZnTe:Cr[sup 2+] layers grown by molecular beam epitaxy on (001) GaAs substrates and doped with chromium from a metallic source or CrI[sub 3] compound have been studied by current deep level transient spectroscopy (I-DLTS). The spectra of the layers show the presence of a deep level with an...

  • Heavy phosphorous doping in molecular beam epitaxial grown silicon with a GaP decomposition source. Lippert, G.; Osten, H.J. // Applied Physics Letters;6/5/1995, Vol. 66 Issue 23, p3197 

    Examines the method of doping with phosphorus in solid source silicon molecular beam epitaxy using a gallium-phosphorus decomposition source. Ability of the source to evaporate solid gallium-phosphorous and combine with a mass separator system; Attainment of the concentrations of phosphorus...

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics