TITLE

Fuzzy Relatives of the CLARANS Algorithm With Application to Text Clustering

AUTHOR(S)
Mahfouz, Mohamed A.; Ismail, M. A.
PUB. DATE
February 2009
SOURCE
Proceedings of World Academy of Science: Engineering & Technolog;
SOURCE TYPE
DOC. TYPE
Article
ABSTRACT
This paper introduces new algorithms (Fuzzy relative of the CLARANS algorithm FCLARANS and Fuzzy c Medoids based on randomized search FCMRANS) for fuzzy clustering of relational data. Unlike existing fuzzy c-medoids algorithm (FCMdd) in which the within cluster dissimilarity of each cluster is minimized in each iteration by recomputing new medoids given current memberships, FCLARANS minimizes the same objective function minimized by FCMdd by changing current medoids in such away that that the sum of the within cluster dissimilarities is minimized. Computing new medoids may be effected by noise because outliers may join the computation of medoids while the choice of medoids in FCLARANS is dictated by the location of a predominant fraction of points inside a cluster and, therefore, it is less sensitive to the presence of outliers. In FCMRANS the step of computing new medoids in FCMdd is modified to be based on randomized search. Furthermore, a new initialization procedure is developed that add randomness to the initialization procedure used with FCMdd. Both FCLARANS and FCMRANS are compared with the robust and linearized version of fuzzy c-medoids (RFCMdd). Experimental results with different samples of the Reuter-21578, Newsgroups (20NG) and generated datasets with noise show that FCLARANS is more robust than both RFCMdd and FCMRANS. Finally, both FCMRANS and FCLARANS are more efficient and their outputs are almost the same as that of RFCMdd in terms of classification rate.
ACCESSION #
38214337

 

Related Articles

  • Comparative Analysis of Clustering-Based Approaches for 3-D Single Tree Detection Using Airborne Fullwave Lidar Data. Gupta, Sandeep; Weinacker, Holger; Koch, Barbara // Remote Sensing;Apr2010, Vol. 2 Issue 4, p968 

    In the past, many algorithms have been applied for three-dimensional (3-D) single tree extraction using Airborne Laser Scanner (ALS) data. Clustering based algorithms are widely used in different applications but rarely being they used in the field of forestry using ALS data as an input. In this...

  • HYBRID ANT-BASED CLUSTERING ALGORITHM WITH CLUSTER ANALYSIS TECHNIQUES. Omar, Wafa'a; Badr, Amr; El-Fattah Hegazy, Abd // Journal of Computer Science;Jun2013, Vol. 9 Issue 6, p780 

    Cluster analysis is a data mining technology designed to derive a good understanding of data to solve clustering problems by extracting useful information from a large volume of mixed data elements. Recently, researchers have aimed to derive clustering algorithms from nature's swarm behaviors....

  • MULTI-DENSITY DBSCAN USING REPRESENTATIVES: MDBSCAN-UR. Ahmed, Rwand; El-Zaza, Eman; Ashour, Wesam // Computing & Information Systems;Oct2011, Vol. 15 Issue 2, p1 

    DBSCAN is one of the most popular algorithms for cluster analysis. It can discover clusters with arbitrary shape and separate noises. But this algorithm cannot choose its parameter according to distributing of dataset. It simply uses the global uses minimum number of points (MinPts) parameter,...

  • AVOIDING NOISE AND OUTLIERS IN K-MEANS. Jnena, Rami; Timraz, Mohammed; Ashour, Wesam // Computing & Information Systems;Oct2011, Vol. 15 Issue 2, p1 

    Applying k-means algorithm on the datasets that include large number of noise and outlier objects, gives unclear clusters results. In this paper we proposed a new technique for avoiding these noise and outliers by applying some preprocessing and post processing steps for the dataset that have to...

  • K-Means for Spherical Clusters with Large Variance in Sizes. Fahim, A. M.; Saake, G.; Salem, A. M.; Torkey, F. A.; Ramadan, M. A. // International Journal of Computer Science;2009, Vol. 4 Issue 3, p145 

    Data clustering is an important data exploration technique with many applications in data mining. The k-means algorithm is well known for its efficiency in clustering large data sets. However, this algorithm is suitable for spherical shaped clusters of similar sizes and densities. The quality of...

  • DERIVING CLUSTER KNOWLEDGE USING ROUGH SET THEORY. Upadhyaya, Shuchita; Arora, Alka; Jain, Rajni // Journal of Theoretical & Applied Information Technology;2008, Vol. 4 Issue 8, p688 

    Clustering algorithms gives general description of the clusters listing number of clusters and member entities in those clusters. It lacks in generating cluster description in the form of pattern. Deriving pattern from clusters along with grouping of data into clusters is important from data...

  • Avoiding Objects with few Neighbors in the K-Means Process and Adding ROCK Links to Its Distance. Alnabriss, Hadi A.; Ashour, Wesam // International Journal of Computer Applications;Aug2011, Vol. 28, p12 

    K-means is considered as one of the most common and powerful algorithms in data clustering, in this paper we're going to present new techniques to solve two problems in the K-means traditional clustering algorithm, the 1st problem is its sensitivity for outliers, in this part we are going to...

  • ASSOCIATION RULE MINING BASED VIDEO CLASSIFIER WITH LATE ACCEPTANCE HILL CLIMBING APPROACH. VIJAYAKUMAR, V.; NEDUNCHEZHIAN, R. // Journal of Theoretical & Applied Information Technology;2/10/2013, Vol. 48 Issue 1, p1 

    Video classification is an essential step towards video perceptive. In recent years, the concept of utilizing association rules for classification emerged. This approach is more efficient and accurate than traditional techniques. Associative classifier integrates two data mining tasks such as...

  • Aggregate Two-Way Co-Clustering of Ads and User Data for Online Advertisements. MENG-LUN WU; CHIA-HUI CHANG; RUI-ZHE LIU; TENG-KAI FAN // Journal of Information Science & Engineering;Jan2012, Vol. 28 Issue 1, p83 

    Clustering plays an important role in data mining, as it is used by many applications as a preprocessing step for data analysis. Traditional clustering focuses on grouping similar objects, while two-way co-clustering can group dyadic data (objects as well as their attributes) simultaneously. In...

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics