Analysis of Idealized Tropical Cyclone Simulations Using the Weather Research and Forecasting Model: Sensitivity to Turbulence Parameterization and Grid Spacing

Hill, Kevin A.; Lackmann, Gary M.
February 2009
Monthly Weather Review;Feb2009, Vol. 137 Issue 2, p745
Academic Journal
The Weather Research and Forecasting Advanced Research Model (WRF-ARW) was used to perform idealized tropical cyclone (TC) simulations, with domains of 36-, 12-, and 4-km horizontal grid spacing. Tests were conducted to determine the sensitivity of TC intensity to the available surface layer (SL) and planetary boundary layer (PBL) parameterizations, including the Yonsei University (YSU) and Mellor–Yamada–Janjic (MYJ) schemes, and to horizontal grid spacing. Simulations were run until a quasi-steady TC intensity was attained. Differences in minimum central pressure (Pmin) of up to 35 hPa and maximum 10-m wind (V10max) differences of up to 30 m s-1 were present between a convection-resolving nested domain with 4-km grid spacing and a parent domain with cumulus parameterization and 36-km grid spacing. Simulations using 4-km grid spacing are the most intense, with the maximum intensity falling close to empirical estimates of maximum TC intensity. Sensitivity to SL and PBL parameterization also exists, most notably in simulations with 4-km grid spacing, where the maximum intensity varied by up to ∼10 m s-1 (V10max) or∼13 hPa (Pmin). Values of surface latent heat flux (LHFLX) are larger in MYJ than in YSU at the same wind speeds, and the differences increase with wind speed, approaching 1000 W m-2 at wind speeds in excess of 55 m s-1. This difference was traced to a larger exchange coefficient for moisture, CQ, in the MYJ scheme. The exchange coefficients for sensible heat (Cθ) and momentum (CD) varied by <7% between the SL schemes at the same wind speeds. The ratio Cθ/CD varied by <5% between the schemes, whereas CQ/CD was up to 100% larger in MYJ, and the latter is theorized to contribute to the differences in simulated maximum intensity. Differences in PBL scheme mixing also likely played a role in the model sensitivity. Observations of the exchange coefficients, published elsewhere and limited to wind speeds <30 m s-1, suggest that CQ is too large in the MYJ SL scheme, whereas YSU incorporates values more consistent with observations. The exchange coefficient for momentum increases linearly with wind speed in both schemes, whereas observations suggest that the value of CD becomes quasi-steady beyond some critical wind speed (∼30 m s-1).


Related Articles


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics