TITLE

Electron mobility in scaled silicon metal-oxide-semiconductor field-effect transistors on off-axis substrates

AUTHOR(S)
Guoxuan Qin; Han Zhou; Ramayya, Edwin B.; Zhenqiang Ma; Knezevic, Irena
PUB. DATE
February 2009
SOURCE
Applied Physics Letters;2/16/2009, Vol. 94 Issue 7, pN.PAG
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Off-axis silicon wafers promise monolithic integration of III-V optoelectronics with silicon microelectronics. However, it is unclear how miniaturization affects electronic device performance on off-axis substrates. We present the fabrication and characterization of metal-oxide-semiconductor field-effect transistors (MOSFETs) with different gate lengths on regular Si(100) and 4° off-axis wafers. The field-effect electron mobility in the off-axis devices is lower than in their (100)-wafer counterparts with equivalent gate length. Monte Carlo simulations have reproduced the experimental data and demonstrated that the mobility degradation in off-axis devices stems from enhanced electron scattering from the Si/SiO2 surface roughness. Short-channel MOSFETs on (100) and off-axis substrates perform comparably.
ACCESSION #
36797963

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics