Investigating Braess' Paradox with Time-Dependent Queues

Wei-Hua Lin; Lo, Hong K.
February 2009
Transportation Science;Feb2009, Vol. 43 Issue 1, p117
Academic Journal
In the 1960s, Braess showed that the overall system performance of a transportation network can be degraded when a new link is added to the network, given that travelers choose their routes based on the user equilibrium (UE) principle. This phenomenon is often referred to as Braess' paradox (BP). The original five-link BP network has been studied extensively with static link performance functions. In this paper, we revisit the original BP network with a dynamic point-queue model and examine whether the results from the static model would hold for the case with time-dependent queues. For this purpose, we solve the BP problem with the consideration of dynamic queuing that leads the system to a steady state while satisfying the dynamic user equilibrium (DUE) condition at every instant. Our results indicate that the locations of congestion, or "hot spots," of the system are sensitive to the capacity of each link in an intricate manner. The "surprising result" reported in previous studies with link performance functions, that a system can spontaneously grow out of Braess' paradox if the demand is sufficiently high, does not occur with time-dependent queues. Instead, we show that queues in different stages have different impacts on the system performance. The implication of this result is discussed in the context of developing proactive dynamic traffic control strategies that can eliminate the negative impact of BP while keeping the system operating at the DUE condition. Even though this study focuses on the original five-link network, the results illustrate the potential pitfalls of extending insights developed from a static framework for dynamic traffic and the importance of studying the problem with a dynamic framework for real-time traffic control.


Related Articles

  • Multiple periods stochastic mean-excess user equilibrium model in stochastic network. QIN Juan; ZHANG Jin; LV Biao // Application Research of Computers / Jisuanji Yingyong Yanjiu;Apr2014, Vol. 31 Issue 4, p1119 

    In order to reflect travelers' risk aversive route choice behaviors in a more accurate manner in a stochastic road network, by means of extending the mean-excess traffic equilibrium model, this paper proposed a multiple periods stochastic mean-excess user equilibrium model with double...

  • An Intersection-Movement-Based Dynamic User Optimal Route Choice Problem. Jiancheng Long; Hai-Jun Huang; Ziyou Gao; Szeto, W. Y. // Operations Research;Sep/Oct2013, Vol. 61 Issue 5, p1134 

    In this paper a novel variational inequality (VI) formulation of the dynamic user optimal (DUO) route choice problem is proposed using the concept of approach proportion. An approach proportion represents the proportion of travelers that select a turning or through movement when leaving a node....

  • Travel times in queueing networks and network sojourns. Serfozo, Richard F. // Annals of Operations Research;1994, Vol. 48 Issue 1-4, p3 

    We first describe expected values of sojourn times for semi-stationary (or synchronous) networks. This includes sojourn times for units and sojourn times for the entire network. A typical sojourn time of a unit is the time it spends in a sector (set of nodes) while it travels through the...

  • Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows. Ashok, K.; Ben-Akiva, M. E. // Transportation Science;May2002, Vol. 36 Issue 2, p184 

    This paper presents a new suite of models for the estimation and prediction of time-dependent Origin-Destination (O-D) matrices. The key contribution of the proposed approach is the explicit modeling and estimation of the dynamic mapping (the assignment matrix) between time-dependent O-D flows...

  • Modeling Vehicular Traffic Flow using M/G/C/C State Dependent Queueing Models. Jain, Rajat; Smith, J. Macgregor // Transportation Science;Nov97, Vol. 31 Issue 4, p324 

    In this paper, M/G/CIC state dependent queueing models are proposed for modeling and analyzing vehicular traffic flows. Congestion aspects of traffic flow are represented by introducing state dependent service rates as a function of number of vehicles on each road link. Analytical models for...

  • Analysis of Traffic Flow at Signalized Junctions in Uyo Metropolis. Udoh, Nse S.; Ekpenyong, Emmanuel J. // Studies in Mathematical Sciences;11/30/2012, Vol. 5 Issue 2, p72 

    Traffic flows at three signalized junctions in Uyo metropolis were considered and the data used for the analysis were collected during peak periods (morning and evening) for three consecutive days. The performance measures of congestion such as the average queue length, arrival and saturation...

  • Trajectory Analysis of the Stochastic Queue Median in a Plane with Rectilinear Distances. Brandeau, Margaret L.; Chiu, Samuel S. // Transportation Science;Aug90, Vol. 24 Issue 3, p230 

    In this paper we analyze the trajectory of stochastic queue median (SQM) location problem in a planar region with a rectilinear travel metric. The location objective is to minimize expected response time to customers (that is, travel time plus queue delay). We introduce a methodology for...

  • HEAVY TRAFFIC RESPONSE TIMES FOR A PRIORITY QUEUE WITH LINEAR PRIORITIES. Nelson, Randolph D. // Operations Research;May/Jun90, Vol. 38 Issue 3, p560 

    This paper analyzes a queueing system consisting of a single server which dispenses service to jobs of K is greater than or equal to I priority classes. Jobs are assumed to arrive to the queue according to a Poisson point process with a class dependent rate and to have class dependent service...

  • APPROXIMATING MANY SERVER QUEUES BY MEANS OF SINGLE SERVER QUEUES. Arjas, Elja; Lehtonen, Tapani // Mathematics of Operations Research;Aug78, Vol. 3 Issue 3, p205 

    Obtaining time dependent results for many server queues is, under general structural assumptions, a hard problem. This paper makes an attempt to approximate stochastically the behaviour of a general many server queue by using single server queues as stochastic bounds. We propose three...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics