TITLE

The energetic implications of uncoupling protein-3 in skeletal muscle

AUTHOR(S)
Seifert, Erin L.; Bézaire, Véronic; F. Gerrits, Martin; Bevilacqua, Lisa; Gowing, Adrienne; Harper, Mary-Ellen; Costford, Sheila R.
PUB. DATE
October 2007
SOURCE
Applied Physiology, Nutrition & Metabolism;Oct2007, Vol. 32 Issue 5, p884
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Despite almost a decade of research since the identification of uncoupling protein-3 (UCP3), the molecular mechanisms and physiological functions of this mitochondrial anion carrier protein are not well understood. Because of its highly selective expression in skeletal muscle and the existence of mitochondrial proton leak in this tissue, early reports proposed that UCP3 caused a basal proton leak and increased thermogenesis. However, gene expression data and results from knockout and overexpression studies indicated that UCP3 does not cause basal proton leak or physiological thermogenesis. UCP3 expression is associated with increases in circulating fatty acids and in fatty acid oxidation (FAO) in muscle. Fatty acids are also well recognized as activators of the prototypic UCP1 in brown adipose tissue. This has led to hypotheses implicating UCP3 in mitochondrial fatty acid translocation. The corresponding hypothesized physiological roles include facilitated FAO and protection from the lipotoxic effects of fatty acids. Recent in vitro studies of physiological increases in UCP3 in muscle cells demonstrate increased FAO, and decreased reactive oxygen species (ROS) production. Detailed mechanistic studies indicate that ROS or lipid by-products of ROS can activate a UCP3-mediated proton leak, which in turn acts in a negative feedback loop to mitigate ROS production. Altogether, UCP3 appears to play roles in muscle FAO and mitigated ROS production. Future studies will need to elucidate the molecular mechanisms underlying increased FAO, as well as the physiological relevance of ROS-activated proton leak.
ACCESSION #
32486218

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics