TITLE

The surfaces capable of division into infinitesimal squares by their curves of curvature: A

AUTHOR(S)
Hertrich-Jeromin, Udo
PUB. DATE
March 2000
SOURCE
Mathematical Intelligencer;Spring2000, Vol. 22 Issue 2, p54
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Analyzes the classical geometric approach to differential geometry. Context of the notion of infinitesimal geometry; Characterization of isothermic surfaces as direct analog to the definition of discrete isothermic nets; Implications of the approach for the mediation between discrete net theory and differential geometry.
ACCESSION #
3142449

 

Related Articles

  • Graded differential geometry of graded matrix algebras. Grosse, H.; Reiter, G. // Journal of Mathematical Physics;Dec99, Vol. 40 Issue 12, p6609 

    Studies the graded derivation-based noncommutative differential geometry of the Z[sub 2] algebra M(n/m) of complex (n+m)x(n+m)-matrices. Algebra of the graded forms; Graded Cartan calculus; Graded symplectic structure; Sector bundles; Universality of the graded derivation-based first-order...

  • Graded differential geometry of graded matrix algebras. Grosse, H.; Reiter, G. // Journal of Mathematical Physics;Dec99, Vol. 40 Issue 12, p6609 

    Studies the graded derivation-based noncommutative differential geometry of the Z[sub 2] algebra M(n/m) of complex (n+m)x(n+m) matrices with the usual block matrix grading. Graded derivation-based differential calculus on graded matrix algebras; Homogenous bases and the canonical graded...

  • Nets with polydron. Russell, Jill // Mathematics Teaching;Mar96, Issue 154, p12 

    Presents an experiment on the nets of a regular octahedron. Spotting of repeated cube nets; Recording of nets in sets.

  • Application of Soliton Theory to the Construction of Isometric Immersions of M[sup n] [sup 1] (c[sub 1] ) � M[sup n] [sup 2] (c[sub 2] ) into Constant Curvature Spaces M[sup n] (�1). Chen, Jian Hua // Acta Mathematica Sinica;2002, Vol. 18 Issue 4, p765 

    In this paper, we apply the soliton theory to the case of isometric immersion in differential geometry and obtain a family of isometric immersions from M[SUPn1](c[SUB1]) � M[SUPn2](c[SUB2]) to space forms M[SUPn](c) by introducing 2-parameter loop algebra.

  • Sessions of the Seminar 'Algebra i Logika'.  // Algebra & Logic;Sep2010, Vol. 49 Issue 4, p386 

    The article presents several sessions of the seminar Algebra i Logika which include the 1,634th session on computations and functionals of finite types, the 1,635th session on model theories, noncommutative geometry and physics and the 1,637th session on computable separation in topology.

  • Local differential geometry of null curves in conformally flat space-time. Urbantke, H. // Journal of Mathematical Physics;Oct89, Vol. 30 Issue 10, p2238 

    The conformally invariant differential geometry of null curves in conformally flat space-times is given, using the six-vector formalism, which has generalizations to higher dimensions. This is then paralleled by a twistor description, with a twofold merit: first, sometimes the description is...

  • Transformation methods in computational electromagnetism. Nicolet, A.; Remacle, J.-F.; Meys, B.; Genon, A.; Legros, W. // Journal of Applied Physics;5/15/1994, Vol. 75 Issue 10, p6036 

    Discusses the use of differential geometry in computational electromagnetics. Finite elements and transformation method; Characteristics of electromagnetic problems.

  • Quantum Clifford algebra from classical differential geometry. Vargas, Jose G.; Torr, Douglas G. // Journal of Mathematical Physics;Mar2002, Vol. 43 Issue 3, p1353 

    We show the emergence of Clifford algebras of nonsymmetric bilinear forms as cotangent algebras of Kaluza–Klein (KK) spaces pertaining to teleparallel space–times. These spaces are canonically determined by the horizontal differential invariants of Finsler bundles of the type,...

  • A short survey of noncommutative geometry. Connes, Alain // Journal of Mathematical Physics;Jun2000, Vol. 41 Issue 6 

    We give a survey of selected topics in noncommutative geometry, with some emphasis on those directly related to physics, including our recent work with Dirk Kreimer on renormalization and the Riemann-Hilbert problem. We discuss at length two issues. The first is the relevance of the paradigm of...

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics