TITLE

Atomic force microscope cantilever spring constant evaluation for higher mode oscillations: A kinetostatic method

AUTHOR(S)
Tseytlin, Yakov M.
PUB. DATE
February 2008
SOURCE
Review of Scientific Instruments;Feb2008, Vol. 79 Issue 2, p025102
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Our previous study of the particle mass sensor has shown a large ratio (up to thousands) between the spring constants of a rectangular cantilever in higher mode vibration and at the static bending or natural mode vibration. This has been proven by us through the derived nodal point position equation. That solution is good for a cantilever with the free end in noncontact regime and the probe shifted from the end to an effective section and contacting a soft object. Our further research shows that the same nodal position equation with the proper frequency equations may be used for the same spring constant ratio estimation if the vibrating at higher mode cantilever’s free end has a significant additional mass clamped to it or that end is in permanent contact with an elastic or hard measurand object (reference cantilever). However, in the latter case, the spring constant ratio is much smaller (in tens) than in other mentioned cases at equal higher (up to fourth) vibration modes. We also present the spring constant ratio for a vibrating at higher eigenmode V-shaped cantilever, which is now in wide use for atomic force microscopy. The received results on the spring constant ratio are in good (within a few percent) agreement with the theoretical and experimental data published by other researchers. The knowledge of a possible spring constant transformation is important for the proper calibration and use of an atomic force microscope with vibrating cantilever in the higher eigenmodes for measurement and imaging with enlarged resolution.
ACCESSION #
31215943

 

Related Articles

  • Noninvasive determination of optical lever sensitivity in atomic force microscopy. Higgins, M. J.; Proksch, R.; Sader, J. E.; Polcik, M.; Mc Endoo, S.; Cleveland, J. P.; Jarvis, S. P. // Review of Scientific Instruments;Jan2006, Vol. 77 Issue 1, p013701 

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular...

  • Note: Lateral force microscope calibration using multiple location pivot loading of rectangular cantilevers. Koo-Hyun Chung; Reitsma, Mark G. // Review of Scientific Instruments;Feb2010, Vol. 81 Issue 2, p026104 

    This note outlines a calibration method for atomic force microscope friction measurement that uses the “pivot” method of [Bogdanovic et al., Colloids Surf. B 19, 397 (2000)] to generate optical lever sensitivities for known torque applied to rectangular cantilevers. We demonstrate...

  • Nondestructive and noncontact method for determining the spring constant of rectangular cantilevers. Golovko, Dmytro S.; Haschke, Thomas; Wiechert, Wolfgang; Bonaccurso, Elmar // Review of Scientific Instruments;Apr2007, Vol. 78 Issue 4, p043102 

    We present here an experimental setup and suggest an extension to the long existing added-mass method for the calibration of the spring constant of atomic force microscope cantilevers. Instead of measuring the resonance frequency shift that results from attaching particles of known masses to the...

  • Thermal calibration of photodiode sensitivity for atomic force microscopy. Attard, Phil; Pettersson, Torbjörn; Rutland, Mark W. // Review of Scientific Instruments;Nov2006, Vol. 77 Issue 11, p116110 

    The photodiode sensitivity in the atomic force microscope is calibrated by relating the voltage noise to the thermal fluctuations of the cantilever angle. The method accounts for the ratio of the thermal fluctuations measured in the fundamental vibration mode to the total, and also for the tilt...

  • Calibration of atomic force microscope cantilevers using piezolevers. Aksu, Saltuk B.; Turner, Joseph A. // Review of Scientific Instruments;Apr2007, Vol. 78 Issue 4, p043705 

    The atomic force microscope (AFM) can provide qualitative information by numerous imaging modes, but it can also provide quantitative information when calibrated cantilevers are used. In this article a new technique is demonstrated to calibrate AFM cantilevers using a reference piezolever....

  • Calibration of the torsional spring constant and the lateral photodiode response of frictional force microscopes. Feiler, Adam; Attard, Phil; Larson, Ian // Review of Scientific Instruments;Jul2000, Vol. 71 Issue 7 

    We present a direct one-step technique to measure the torsional spring constant of cantilevers used for lateral or friction measurements with the atomic force microscope. The method simultaneously calibrates the photodiode response to the angular deflection of the cantilever. It does not rely...

  • Quantitative measurement of indentation hardness and modulus of compliant materials by atomic force microscopy. Passeri, D.; Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A.; Lucci, M.; Davoli, I.; Berezina, S. // Review of Scientific Instruments;Jun2008, Vol. 79 Issue 6, p066105 

    An atomic force microscopy (AFM) based technique is proposed for the characterization of both indentation modulus and hardness of compliant materials. A standard AFM tip is used as an indenter to record force versus indentation curves analogous to those obtained in standard indentation tests. In...

  • Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy. Melcher, John; Hu, Shuiqing; Raman, Arvind // Review of Scientific Instruments;Jun2008, Vol. 79 Issue 6, p061301 

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and...

  • Frequency-modulation atomic force microscopy at high cantilever resonance frequencies using the heterodyne optical beam deflection method. Fukuma, Takeshi; Kimura, Kenjiro; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi // Review of Scientific Instruments;Dec2005, Vol. 76 Issue 12, p126110 

    We have developed a frequency-modulation atomic force microscope (FM-AFM) with a wideband cantilever deflection sensor using the heterodyne optical beam deflection method. The method enhances the bandwidth of the deflection measurement up to the maximum frequency for the laser power modulation,...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics