TITLE

A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution

AUTHOR(S)
Danley, Patrick D; Mullen, Sean P; Fenglong Liu; Nene, Vishvanath; Quackenbush, John; Shaw, Kerry L
PUB. DATE
January 2007
SOURCE
BMC Genomics;2007, Vol. 8, p109
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Background: As the developmental costs of genomic tools decline, genomic approaches to nonmodel systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's) in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution. Results: We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC) sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page Conclusion: Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will provide much needed genomic resources for three distinct but overlapping fields of inquiry: neurobiology, speciation, and molecular evolution.
ACCESSION #
28858814

 

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics