TITLE

Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

AUTHOR(S)
Tjahjanto, D.; Turteltaub, S.; Suiker, A.
PUB. DATE
February 2008
SOURCE
Continuum Mechanics & Thermodynamics;Feb2008, Vol. 19 Issue 7, p399
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the surrounding phases, i.e., the ferrite-based matrix and the untransformed austenite. In the present work, a crystallographically based model is developed to describe the elastoplastic transformation process in the austenitic region. The model is formulated within a large-deformation framework where the transformation kinematics is connected to the crystallographic theory of martensitic transformations. The effective elastic stiffness accounts for anisotropy arising from crystallographic orientations as well as for dilation effects due to the transformation. The transformation model is coupled to a single-crystal plasticity model for a face-centered cubic lattice to quantify the plastic deformations in the untransformed austenite. The driving forces for transformation and plasticity are derived from thermodynamical principles and include lower-length-scale contributions from surface and defect energies associated to, respectively, habit planes and dislocations. In order to demonstrate the essential features of the model, simulations are carried out for austenitic single crystals subjected to basic loading modes. To describe the elastoplastic response of the ferritic matrix in a multiphase steel, a crystal plasticity model for a body-centered cubic lattice is adopted. This model includes the effect of nonglide stresses in order to reproduce the asymmetry of slips in the twinning and antitwinning directions that characterizes the behavior of this type of lattices. The models for austenite and ferrite are combined to simulate the microstructural behavior of a multiphase steel. The results of the simulations show the relevance of including plastic deformations in the austenite in order to predict a more realistic evolution of the transformation process.
ACCESSION #
28606385

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics