TITLE

Flying mirror model for interaction of a super-intense laser pulse with a thin plasma layer: Transparency and shaping of linearly polarized laser pulses

AUTHOR(S)
Kulagin, Victor V.; Cherepenin, Vladimir A.; Min Sup Hur; Hyyong Suk
PUB. DATE
November 2007
SOURCE
Physics of Plasmas;Nov2007, Vol. 14 Issue 11, p113102
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
A self-consistent one-dimensional (1D) flying mirror model is developed for description of an interaction of an ultra-intense laser pulse with a thin plasma layer (foil). In this model, electrons of the foil can have large longitudinal displacements and relativistic longitudinal momenta. An approximate analytical solution for a transmitted field is derived. Transmittance of the foil shows not only a nonlinear dependence on the amplitude of the incident laser pulse, but also time dependence and shape dependence in the high-transparency regime. The results are compared with particle-in-cell (PIC) simulations and a good agreement is ascertained. Shaping of incident laser pulses using the flying mirror model is also considered. It can be used either for removing a prepulse or for reducing the length of a short laser pulse. The parameters of the system for effective shaping are specified. Predictions of the flying mirror model for shaping are compared with the 1D PIC simulations, showing good agreement.
ACCESSION #
27735336

 

Related Articles

  • Self-mode-transition from laser wakefield accelerator to plasma wakefield accelerator of laser-driven plasma-based electron acceleration. Pae, K. H.; Choi, I. W.; Lee, J. // Physics of Plasmas;Dec2010, Vol. 17 Issue 12, p123104 

    Via three-dimensional particle-in-cell simulations, the self-mode-transition of a laser-driven electron acceleration from laser wakefield to plasma-wakefield acceleration is studied. In laser wakefield accelerator (LWFA) mode, an intense laser pulse creates a large amplitude wakefield resulting...

  • Laser-generated plasmas at INFN-LNS. Torrisi, L.; Gammino, S.; Celona, L.; Krasa, J.; Laska, L.; Wolowski, J. // Plasma Physics Reports;Jun2006, Vol. 32 Issue 6, p514 

    Hot plasmas can be generated by fast and intense laser pulses ablating solids placed in vacuum. A Nd:Yag laser operating at the fundamental and second harmonics with 9-ns pulses (maximum energy of 900 mJ) focused on metallic surfaces produces high ablation yields of the order of �g/pulse...

  • Flying mirror model for interaction of a super-intense nonadiabatic laser pulse with a thin plasma layer: Dynamics of electrons in a linearly polarized external field. Kulagin, Victor V.; Cherepenin, Vladimir A.; Min Sup Hur; Hyyong Suk // Physics of Plasmas;Nov2007, Vol. 14 Issue 11, p113101 

    Interaction of a high-power laser pulse having a sharp front with a thin plasma layer is considered. General one-dimensional numerical-analytical model is elaborated, in which the plasma layer is represented as a large collection of electron sheets, and a radiation reaction force is derived...

  • Numerical modeling of plasma plume evolution against ambient background gas in laser blow off experiments. Patel, Bhavesh G.; Das, Amita; Kaw, Predhiman; Singh, Rajesh; Kumar, Ajai // Physics of Plasmas;Jul2012, Vol. 19 Issue 7, p073105 

    Two dimensional numerical modelling based on simplified hydrodynamic evolution for an expanding plasma plume (created by laser blow off) against an ambient background gas has been carried out. A comparison with experimental observations shows that these simulations capture most features of the...

  • Simulations of laser-wakefield acceleration with external electron-bunch injection for REGAE experiments at DESY. Grebenyuk, Julia; Mehrling, Timon; Tsung, Frank S.; Floettman, Klaus; Osterhoff, Jens // AIP Conference Proceedings;Dec2012, Vol. 1507 Issue 1, p688 

    We present particle-in-cell simulations for future laser-plasma wakefield experiments with external bunch injection at the REGAE accelerator facility at DESY, Hamburg, Germany. Two effects have been studied in detail: emittance evolution of electron bunches externally injected into a wake, and...

  • Comoving acceleration of overdense electron-positron plasma by colliding ultra-intense laser pulses. Liang, Edison // Physics of Plasmas;Jun2006, Vol. 13 Issue 6, p064506 

    Particle-in-cell (PIC) simulation results of sustained acceleration of electron-positron (e+e-) plasmas by comoving electromagnetic (EM) pulses are presented. When a thin slab of overdense e+e- plasma is irradiated with linear-polarized ultra-intense short laser pulses from both sides, the...

  • Fizeau interferometer for measurement of plasma electron current. Brower, D. L.; Ding, W. X.; Deng, B. H.; Mahdavi, M. A.; Mirnov, V.; Prager, S. C. // Review of Scientific Instruments;Oct2004 Part I & II, Vol. 75 Issue 10, p3399 

    A high-resolution, vertically viewing far-infrared polarimeter-interferometer system is currently used on the Madison symmetric torus (MST) reversed-field pinch (RFP) to measure the plasma electron density and toroidal current density via Faraday rotation. In this article, we propose a scheme to...

  • Effects of plasma density on relativistic self-injection for electron laser wake-field acceleration. Zhidkov, A.; Koga, J.; Hosokai, T.; Kinoshita, K.; Uesaka, M. // Physics of Plasmas;Dec2004, Vol. 11 Issue 12, p5379 

    Density effects on the dynamics of a cavity produced in the wake of an ultraintense (a0=eE/mcω>1) and short (ωplτ/π<1) laser pulse and on the duration of accelerated electrons are studied via two-dimensional particle-in-cell simulation. Formation of a nonbreaking cavity is a...

  • Energetics of multiple-ion species hohlraum plasmas. Neumayer, P.; Berger, R. L.; Callahan, D.; Divol, L.; Froula, D. H.; London, R. A.; MacGowan, B. J.; Meezan, N. B.; Michel, P. A.; Ross, J. S.; Sorce, C.; Widmann, K.; Suter, L. J.; Glenzer, S. H. // Physics of Plasmas;May2008, Vol. 15 Issue 5, p056307 

    A study of the laser-plasma interaction processes has been performed in multiple-ion species hohlraum plasmas at conditions similar to those expected in indirect drive inertial confinement fusion targets. Gas-filled hohlraums with electron densities of 5.5×1020 and 9×1020 cm-3 are heated...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics