# Some Elements of Finite Order in K 2â„š

## Related Articles

- Relative $K_{0}$, annihilators, Fitting ideals and Stickelberger phenomena. Victor P. Snaith // Proceedings of the London Mathematical Society;May2005, Vol. 90 Issue 3, p545
When $G$ is abelian and $l$ is a prime we show how elements of the relative K-group $K_{0}({\bf Z}_{l}[G], {\bf Q}_{l})$ give rise to annihilator/Fitting ideal relations of certain associated ${\bf Z}[G]$-modules. Examples of this phenomenon are ubiquitous. Particularly, we give examples in...

- Mathemimetics I: Self-computational prime-number line and three-dimensional Diophantine equation matrix. Trell, Erik // AIP Conference Proceedings;Sep2012, Vol. 1479 Issue 1, p2138
Emulating Nature by observation and ground-up application of its patterns, structures and processes is a classical scientific practice which under the designation of Biomimetics has now been brought to the Nanotechnology scale where even highly complex systems can be replicated by continuous or...

- On the finiteness and non-existence of certain mod 2 Galois representations of quadratic fields. Moon, Hyunsuk; Taguchi, Yuichiro // AIP Conference Proceedings;1/22/2008, Vol. 976 Issue 1, p169
Some finiteness and non-existence results are proved of 2-dimensional mod 2 Galois representations of quadratic fields unramified outside 2.

- THE UNIQUENESS OF THE PRIME MARKOFF NUMBERS. BUTTON, J. O. // Journal of the London Mathematical Society;08/01/1998, Vol. 58 Issue 1, p9
Given the Diophantine equation a2+b2+c2=3abc, a solution triple of natural numbers (a, b, c) can be arranged in ascending order so that adbdc. Then, given the largest element c, one can ask whether this uniquely determines the triple. This is referred to as the Markoff conjecture. The paper...

- On the system of Diophantine equations xÂ² - 6yÂ² = 1 and yÂ² - DzÂ² = 4. DU Xiancun; GUAN Xungui; YANG Huizhang // Journal of Huazhong Normal University;Jun2014, Vol. 48 Issue 3, p310
Let p1, â‹¯, ps (1â‰¤ s â‰¤ 4) are distinct odd primes. In this paper, we proved that if D = 2 p1 â‹¯ ps, 1 â‰¤ s â‰¤ 4, then the system xÂ² - 6yÂ² = 1 and yÂ² - DzÂ² = 4 has only trivial solution (x, y, z) = (Â±5, Â±2,0) with the exception that D = 2 x 11 x 97.

- On exponential sums of digital sums related to Gelfond's theorem. Okada, Tatsuya; Kobayashi, Zenji; Sekiguchi, Takeshi; Shiota, Yasunobu // AIP Conference Proceedings;1/22/2008, Vol. 976 Issue 1, p176
In this paper, we first give explicit formulas of exponential sums of sum of digits related to Gelfond's theorem. As an application of these formulas, we obtain a simple expression of Newman-Coquet type summation formula related to the number of binary digits in a multiple of a prime number.

- On the Farrell—Jones Conjecture and its applications. Bartels, Arthur; Lück, Wolfgang; Reich, Holger // Journal of Topology;Jan2008, Vol. 1 Issue 1, p57
We present the status of the Farrellâ€“Jones Conjecture for algebraic K-theory for a group G and arbitrary coefficient rings R. We add new groups for which the conjecture is known to be true, and we study inheritance properties. We discuss new applications, focussing on the Bass Conjecture,...

- EXCEPTIONAL OBJECTS IN HEREDITARY CATEGORIES. RINGEL, CLAUS MICHAEL // Analele Stiintifice ale Universitatii Ovidius Constanta: Seria M;2015, Vol. 23 Issue 1, p150
Let k be a field and A a finite dimensional k-category which is a hereditary length category. We are going to show that the support algebra of any object of A without self-extension is a finite dimensional k-algebra. An object in A is said to be exceptional provided it is inde-composable and has...

- SYMBOL LENGTHS IN MILNOR K-THEORY. Becher, Karim Johannes; Hoffmann, Detlev W. // Homology, Homotopy & Applications;2004, Vol. 6 Issue 1, p17
Let F be a field and p a prime number. The p-symbol length of F, denoted by Î»p(F), is the least integer l such that every element of the group K2F/pK2F can be written as a sum of â‰¤ l symbols (with the convention that Î»p (F) = âˆž if no such integer exists). In this article, we...