TITLE

A new sample substrate for imaging and correlating organic and trace metal composition in biological cells and tissues

AUTHOR(S)
Miller, Lisa M.; Qi Wang; Smith, Randy J.; Hui Zhong; Elliott, Donald; Warren, John
PUB. DATE
March 2007
SOURCE
Analytical & Bioanalytical Chemistry;Mar2007, Vol. 387 Issue 5, p1705
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Many disease processes involve alterations in the chemical makeup of tissue. Synchrotron-based infrared (IR) and X-ray fluorescence (XRF) microscopes are becoming increasingly popular tools for imaging the organic and trace metal compositions of biological materials, respectively, without the need for extrinsic labels or stains. Fourier transform infrared microspectroscopy (FTIRM) provides chemical information on the organic components of a material at a diffraction-limited spatial resolution of 2–10 μm in the mid-infrared region. The synchrotron X-ray fluorescence (SXRF) microprobe is a complementary technique used to probe trace element content in the same systems with a similar spatial resolution. However to be most beneficial, it is important to combine the results from both imaging techniques on a single sample, which requires precise overlap of the IR and X-ray images. In this work, we have developed a sample substrate containing a gold grid pattern on its surface, which can be imaged with both the IR and X-ray microscopes. The substrate consists of a low trace element glass slide that has a gold grid patterned on its surface, where the major and minor parts of the grid contain 25 and 12 nm gold, respectively. This grid pattern can be imaged with the IR microscope because the reflectivity of gold differs as a function of thickness. The pattern can also be imaged with the SXRF microprobe because the Au fluorescence intensity changes with gold thickness. The tissue sample is placed on top of the patterned substrate. The grid pattern’s IR reflectivity image and the gold SXRF image are used as fiducial markers for spatially overlapping the IR and SXRF images from the tissue. Results show that IR and X-ray images can be correlated precisely, with a spatial resolution of less than one pixel (i.e., 2–3 microns). The development of this new tool will be presented along with applications to paraffin-embedded metalloprotein crystals, Alzheimer’s disease, and hair composition.
ACCESSION #
24109165

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics