TITLE

Laser-generated plasmas at INFN-LNS

AUTHOR(S)
Torrisi, L.; Gammino, S.; Celona, L.; Krasa, J.; Laska, L.; Wolowski, J.
PUB. DATE
June 2006
SOURCE
Plasma Physics Reports;Jun2006, Vol. 32 Issue 6, p514
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Hot plasmas can be generated by fast and intense laser pulses ablating solids placed in vacuum. A Nd:Yag laser operating at the fundamental and second harmonics with 9-ns pulses (maximum energy of 900 mJ) focused on metallic surfaces produces high ablation yields of the order of �g/pulse and dense plasma that expands adiabatically at supersonic velocity along the normal to the target surface. The plasma emits neutral and charged particles. Charge states up to 10+ have been measured in heavy elements ablated with intensities of the order of 1010 W/cm2. The ion temperature of the plasma is evaluated from the ion energy distributions measured with an ion energy analyzer. The electron temperature is measured through Faraday cups placed at the end of long drift tubes by using time-of-flight technique. The neutral temperature is measured with a special mass quadrupole spectrometer placed along the normal to the target surface. The plasma temperature increases with the laser pulse intensity. The ion temperature reaches values of the order of 400 eV, the electron temperature is of the order of 1 keV for hot electrons and 0.1 eV for thermal electrons, and the neutral temperature is of the order of 200 eV. The experimental apparatus, the diagnostic techniques, and the procedures for the plasma temperature characterization will be presented and discussed in detail.
ACCESSION #
23018085

 

Related Articles

  • Comoving acceleration of overdense electron-positron plasma by colliding ultra-intense laser pulses. Liang, Edison // Physics of Plasmas;Jun2006, Vol. 13 Issue 6, p064506 

    Particle-in-cell (PIC) simulation results of sustained acceleration of electron-positron (e+e-) plasmas by comoving electromagnetic (EM) pulses are presented. When a thin slab of overdense e+e- plasma is irradiated with linear-polarized ultra-intense short laser pulses from both sides, the...

  • Fizeau interferometer for measurement of plasma electron current. Brower, D. L.; Ding, W. X.; Deng, B. H.; Mahdavi, M. A.; Mirnov, V.; Prager, S. C. // Review of Scientific Instruments;Oct2004 Part I & II, Vol. 75 Issue 10, p3399 

    A high-resolution, vertically viewing far-infrared polarimeter-interferometer system is currently used on the Madison symmetric torus (MST) reversed-field pinch (RFP) to measure the plasma electron density and toroidal current density via Faraday rotation. In this article, we propose a scheme to...

  • Effects of plasma density on relativistic self-injection for electron laser wake-field acceleration. Zhidkov, A.; Koga, J.; Hosokai, T.; Kinoshita, K.; Uesaka, M. // Physics of Plasmas;Dec2004, Vol. 11 Issue 12, p5379 

    Density effects on the dynamics of a cavity produced in the wake of an ultraintense (a0=eE/mcω>1) and short (ωplτ/π<1) laser pulse and on the duration of accelerated electrons are studied via two-dimensional particle-in-cell simulation. Formation of a nonbreaking cavity is a...

  • Energetics of multiple-ion species hohlraum plasmas. Neumayer, P.; Berger, R. L.; Callahan, D.; Divol, L.; Froula, D. H.; London, R. A.; MacGowan, B. J.; Meezan, N. B.; Michel, P. A.; Ross, J. S.; Sorce, C.; Widmann, K.; Suter, L. J.; Glenzer, S. H. // Physics of Plasmas;May2008, Vol. 15 Issue 5, p056307 

    A study of the laser-plasma interaction processes has been performed in multiple-ion species hohlraum plasmas at conditions similar to those expected in indirect drive inertial confinement fusion targets. Gas-filled hohlraums with electron densities of 5.5×1020 and 9×1020 cm-3 are heated...

  • Self-consistent modeling of jet formation process in the nanosecond laser pulse regime. Mézel, C.; Hallo, L.; Souquet, A.; Breil, J.; Hébert, D.; Guillemot, F. // Physics of Plasmas;Dec2009, Vol. 16 Issue 12, p123112 

    Laser induced forward transfer (LIFT) is a direct printing technique. Because of its high application potential, interest continues to increase. LIFT is routinely used in printing, spray generation and thermal-spike sputtering. Biological material such as cells and proteins have already been...

  • Flying mirror model for interaction of a super-intense laser pulse with a thin plasma layer: Transparency and shaping of linearly polarized laser pulses. Kulagin, Victor V.; Cherepenin, Vladimir A.; Min Sup Hur; Hyyong Suk // Physics of Plasmas;Nov2007, Vol. 14 Issue 11, p113102 

    A self-consistent one-dimensional (1D) flying mirror model is developed for description of an interaction of an ultra-intense laser pulse with a thin plasma layer (foil). In this model, electrons of the foil can have large longitudinal displacements and relativistic longitudinal momenta. An...

  • Self-mode-transition from laser wakefield accelerator to plasma wakefield accelerator of laser-driven plasma-based electron acceleration. Pae, K. H.; Choi, I. W.; Lee, J. // Physics of Plasmas;Dec2010, Vol. 17 Issue 12, p123104 

    Via three-dimensional particle-in-cell simulations, the self-mode-transition of a laser-driven electron acceleration from laser wakefield to plasma-wakefield acceleration is studied. In laser wakefield accelerator (LWFA) mode, an intense laser pulse creates a large amplitude wakefield resulting...

  • On electron acceleration by intense laser pulses in the presence of a stochastic field. Meyer-ter-Vehn, J.; Sheng, Z. M. // Physics of Plasmas;Mar1999, Vol. 6 Issue 3, p641 

    Studies electron acceleration by intense laser pulses. Presence of a stochastic field representing a background plasma; Generation of electron distributions; Obtaining effective temperatures.

  • Production of ultracollimated bunches of multi-MeV electrons by 35 fs laser pulses propagating in exploding-foil plasmas. Giulietti, D.; Galimberti, M.; Giulietti, A.; Gizzi, L. A.; Numico, R.; Tomassini, P.; Borghesi, M.; Malka, V.; Fritzler, S.; Pittman, M.; Ta Phouc, K.; Pukhov, A. // Physics of Plasmas;Sep2002, Vol. 9 Issue 9, p3655 

    Very collimated bunches of high energy electrons have been produced by focusing super-intense femtosecond laser pulses in submillimeter under-dense plasmas. The density of the plasma, preformed with the laser exploding-foil technique, was mapped using Nomarski interferometry. The electron beam...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics