TITLE

Eupatilin attenuates bile acid-induced hepatocyte apoptosis

AUTHOR(S)
Park, Su Cheol; Yoon, Jung-Hwan; Kim, Won; Gwak, Geum-Youn; Kim, Kang Mo; Lee, Sung-Hee; Lee, Soo-Mi; Lee, Hyo-Suk
PUB. DATE
August 2006
SOURCE
Journal of Gastroenterology;Aug2006, Vol. 41 Issue 8, p772
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
In cases of cholestasis, bile acids induce hepatocyte apoptosis by activating death receptor-mediated apoptotic signaling cascades. Eupatilin (5,7-dihydroxy-3,4,6-trimethoxyflavone) is a pharmacologically active ingredient found in Artemisia asiatica and exhibits cytoprotective effects against experimentally induced gastrointestinal, pancreatic, and hepatic damage. This study was undertaken to examine if eupatilin modulates bile acid-induced hepatocyte apoptosis. Huh-BAT cells, a human hepatocellular carcinoma cell line stably transfected with a bile acid transporter, were used in this study. Apoptosis was quantified using 4′,6-diamidino-2-phenylindole dihydrochloride staining, and its signaling cascades were explored by immunoblot analysis. Kinase signaling was evaluated by immunoblotting and by using selective inhibitors. Eupatilin's in vivo effect on bile acid-induced hepatocyte apoptosis was explored in bile duct-ligated rats. Eupatilin significantly reduced bile acid-mediated hepatocyte apoptosis by attenuating bile acid-induced caspase 8 cleavage. Eupatilin diminished the bile acid-induced activation of mitogen-activated protein kinases, including p38 mitogen-activated protein kinase and c-Jun N-terminal kinase. In particular, the eupatilin-mediated inhibition of bile acid-induced c-Jun N-terminal kinase activation was found to be responsible for attenuating caspase 8 cleavage. Moreover, eupatilin diminished hepatocyte apoptosis in bile duct-ligated rats. Eupatilin attenuates bile acid-induced hepatocyte apoptosis by suppressing bile acid-induced kinase activation. Therefore, eupatilin might be therapeutically efficacious in a variety of human liver diseases associated with cholestasis.
ACCESSION #
22437418

 

Related Articles

  • Modulation of Hepatocyte Apoptosis: Cross-talk Between Bile Acids and Nuclear Steroid Receptors. Solá, S.; Amaral, J. D.; Aranha, M. M.; Steer, C. J.; Rodrigues, C. M. P. // Current Medicinal Chemistry;2006, Vol. 13 Issue 25, p3039 

    The efficient removal of unwanted cells, such as senescent, damaged, mutated or infected cells is crucial for the maintenance of normal liver function. In fact, apoptosis has emerged as a potential contributor to the pathogenesis of a number of hepatic disorders, such as viral hepatitis,...

  • Bile Acids Affect Liver Mitochondrial Bioenergetics: Possible Relevance for Cholestasis Therapy. Rolo, Anabela P.; Oliveira, Paulo J.; Moreno, António J. M.; Palmeira, Carlos M. // Toxicological Sciences;Sep2000, Vol. 57 Issue 1, p177 

    It has been pointed out that intracellular accumulation of bile acids cause hepatocyte injury in cholestatic disease process. This study was aimed to test if cytotoxicity of these compounds is mediated through mitochondria dysfunction. Bile acids effects on isolated rat liver mitochondrial were...

  • Interlobular Bile Duct Cholestatic Disease is Aberrant Cytokeratin by Hepatocytes Loss in Pediatric Associated with 7 Expression. Ernst, Linda M.; Spinner, Nancy B.; Piccoli, David A.; Mauger, Joanne; Russo, Pierre // Pediatric & Developmental Pathology;Sep/Oct2007, Vol. 10 Issue 5, p383 

    The objective of this study was to determine whether aberrant hepatic expression of cytokeratin 7 (CK7) and/or other putative stem cell markers is seen in pediatric cholestatic diseases. Eighteen liver biopsies and 14 liver explants from pediatric patients with extrahepatic biliary atresia...

  • FXR as a Drug Target to Treat Progressive Familial Intrahepatic Cholestasis. Ivy, Kathryn Stevens // Vanderbilt Undergraduate Research Journal;Spring2015, Vol. 10, p1 

    Progressive Familial Intrahepatic Cholestasis (PFIC) is a condition that results in the cirrhosis of the liver and eventually liver failure due to impaired bile flow. If left untreated and even if treated, PFIC will result usually in an early death. While the causes of this disease vary, all...

  • Suppression of Autophagic Flux by Bile Acids in Hepatocytes. Manley, Sharon; Ni, Hong-Min; Kong, Bo; Apte, Udayan; Guo, Grace; Ding, Wen-Xing // Toxicological Sciences;Feb2014, Vol. 137 Issue 2, p478 

    Retention of bile acids (BAs) in the liver during cholestasis plays an important role in the development of cholestatic liver injury. Several studies have reported that high concentrations of certain BAs induce cell death and inflammatory response in the liver, and BAs may promote liver...

  • Discovery That Theonellasterol a Marine Sponge Sterol Is a Highly Selective FXR Antagonist That Protects against Liver Injury in Cholestasis. Renga, Barbara; Mencarelli, Andrea; D'Amore, Claudio; Cipriani, Sabrina; D'Auria, Maria Valeria; Sepe, Valentina; Chini, Maria Giovanna; Monti, Maria Chiara; Bifulco, Giuseppe; Zampella, Angela; Fiorucci, Stefano // PLoS ONE;Jan2012, Vol. 7 Issue 1, p1 

    Background: The farnesoid-x-receptor (FXR) is a bile acid sensor expressed in the liver and gastrointestinal tract. Despite FXR ligands are under investigation for treatment of cholestasis, a biochemical condition occurring in a number of liver diseases for which available therapies are poorly...

  • Bile-acid-induced cell injury and protection. Perez, Maria J.; Briz, Oscar; Matsuzaki, Yasushi // World Journal of Gastroenterology;4/14/2009, Vol. 15 Issue 14, p1677 

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of...

  • Canalicular Retention as an in Vitro Assay of Tight Junctional Permeability in Isolated Hepatocyte Couplets: Effects of Protein Kinase Modulation and Cholestatic Agents. Roma, Marcelo G.; Orsler, Dominic J.; Coleman, Roger // Fundamental & Applied Toxicology;1997, Vol. 37 Issue 1, p71 

    A simple, fast method to evaluate acute changes of tight junctional permeability in isolated hepatocyte couplets is proposed. The method consists of the recording of the number of canalicular vacuoles able to retain the previously accumulated fluorescent bile acid analogue...

  • In Silico Identification of Potential Cholestasis-Inducing Agents via Modeling of Na+-Dependent Taurocholate Cotransporting Polypeptide Substrate Specificity. Greupink, Rick; Nabuurs, Sander B.; Zarzycka, Barbara; Verweij, Vivienne; Monshouwer, Mario; Huisman, Maarten T.; Russel, Frans G. M. // Toxicological Sciences;Sep2012, Vol. 129 Issue 1, p35 

    Na+-dependent taurocholate cotransporting polypeptide (NTCP, SLC10A1) is the main transporter facilitating the hepatic uptake of bile acids from the circulation. Consequently, the interaction of xenobiotics, including therapeutic drugs, with the bile acid binding pocket of NTCP could lead to...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics