TITLE

Polymer Networks with Slip-links: 2. Constitutive Equations for a Cross-linked Network

AUTHOR(S)
Drozdov, A.
PUB. DATE
September 2006
SOURCE
Continuum Mechanics & Thermodynamics;Sep2006, Vol. 18 Issue 3/4, p171
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Stress�strain relations are derived for the mechanical response of elastomers at arbitrary three-dimensional deformations with finite strains. An elastomer is treated as an incompressible network of chains bridged by permanent (chemical cross-links and physical cross-links whose lifetime exceeds the characteristic time of deformation) and temporary (entanglements modeled as slip-links) junctions. Two types of chains are introduced in the network to distinguish between permanent and temporary nodes. Type-I chains have free ends, and their motion at the micro-level is constrained by a random number of slip-links. Type-II chains are Gaussian chains permanently connected to the network. Concentration of type-I chains is fixed, while the number of type-II chains per unit volume can change under deformation. The governing equations involve two (networks with constant concentrations of type-II chains) or three (networks where the content of type-II chains is affected by mechanical factors) material parameters. These parameters are found by fitting observations on rubbers, thermoplastic�elastomers, and thermoplastic-elastomer composites. Good agreement is demonstrated between the experimental data in uniaxial tensile tests and the results of numerical simulation at elongations up to 1,000%. It is shown that the adjustable parameters are affected by chemical composition and molecular architecture of polymers in a physically plausible way.
ACCESSION #
21732513

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics