TITLE

Standing waves in the Maxwell-Schr�dinger equation and an optimal configuration problem

AUTHOR(S)
D'Aprile, Teresa; Juncheng Wei
PUB. DATE
January 2006
SOURCE
Calculus of Variations & Partial Differential Equations;Jan2006, Vol. 25 Issue 1, p105
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
We study the following system of Maxwell-Schr�dinger equations where d > 0, u, ? : $$\psi: {\mathbb R}^N \to {\mathbb R}$$ , f : $${\mathbb R} \to {\mathbb R}$$ , N = 3. We prove that the set of solutions has a rich structure: more precisely for any integer K there exists d K > 0 such that, for 0 < d < d K , the system has a solution ( u d, ?d) with the property that u d has K spikes centered at the points $$Q_{1}^\delta,\ldots, Q_K^\delta$$ . Furthermore, setting $$l_\delta=\min_{i \not = j} |Q_i^\delta -Q_j^\delta|$$ , then, as d ? 0, $$(\frac{1}{l_\delta} Q_1^\delta,\ldots, \frac{1}{l_\delta} Q_K^\delta)$$ approaches an optimal configuration for the following maximization problem:
ACCESSION #
19345382

 

Related Articles

  • Standing Waves for Nonlinear Schrödinger Equations with a General Nonlinearity. Byeon, Jaeyoung; Jeanjean, Louis // Archive for Rational Mechanics & Analysis;Aug2007, Vol. 185 Issue 2, p185 

    For elliptic equations ε2Δ u − V( x) u + f( u) = 0, x ∈ R N , N ≧ 3, we develop a new variational approach to construct localized positive solutions which concentrate at an isolated component of positive local minimum points of V, as ε → 0, under conditions on...

  • Thick clusters for the radially symmetric nonlinear Schrödinger equation. Felmer, Patricio; Martínez, Salomé // Calculus of Variations & Partial Differential Equations;Feb2008, Vol. 31 Issue 2, p231 

    This article is devoted to the study of radially symmetric solutions to the nonlinear Schrödinger equation where B is a ball in $${\mathbb{R}}^N$$ , 1 < p < ( N + 2)/( N − 2), N ≥ 3 and the potential V is radially symmetric. We construct positive clustering solutions in an annulus...

  • Exponentially accurate error estimates of quasiclassical eigenvalues. II. Several dimensions. Toloza, J. H. // Journal of Mathematical Physics;Jul2003, Vol. 44 Issue 7, p2806 

    We study the behavior of truncated Rayleigh-Schrödinger series for low-lying eigenvalues of the time-independent Schrödinger equation, in the semiclassical limit &hstroke;&nsarr; 0. In particular we prove that if the potential energy satisfies certain conditions, there is an optimal...

  • Convergence of Logarithmic Quantum Mechanics to the Linear One. G�rka, Przemyslaw // Letters in Mathematical Physics;Sep2007, Vol. 81 Issue 3, p253 

    We study the nonlinear logarithmic Schr�dinger equation in three dimensions. We establish the existence of the solutions of general quasi-linear Schr�dinger equations. Finally, we show the convergence of the logarithmic quantum mechanics to the linear regime.

  • A Counterexample to Dispersive Estimates for Schr�dinger Operators in Higher Dimensions. Goldberg, Michael; Visan, Monica // Communications in Mathematical Physics;Aug2006, Vol. 266 Issue 1, p211 

    In dimension n > 3 we show the existence of a compactly supported potential in the differentiability class Ca, a < n-3/2, for which the solutions to the linear Schr�dinger equation in Rn, -i...tu = - ?u + Vu, u(0) = f, fail to satisfy an evolution estimate of the form "Multiple line...

  • Multi-peak positive solutions for nonlinear Schr�dinger equations with critical frequency. Sato, Yohei // Calculus of Variations & Partial Differential Equations;Jul2007, Vol. 29 Issue 3, p365 

    We study the nonlinear Schr�dinger equations: $$-\epsilon^{2}\Delta u + V(x)u=u^p,\quad u > 0\quad \mbox{in } {\bf R}^{N},\quad u\in H^{1} ({\bf R}^{N}).$$ where p > 1 is a subcritical exponent and V( x) is nonnegative potential function which has �critical frequency�...

  • Bound states for semilinear Schr�dinger equations with sign-changing potential. Ding, Yanheng; Szulkin, Andrzej // Calculus of Variations & Partial Differential Equations;Jul2007, Vol. 29 Issue 3, p397 

    We study the existence and the number of decaying solutions for the semilinear Schr�dinger equations $${-\varepsilon^{2}\Delta u + V(x)u = g(x,u)}$$ , $${\varepsilon > 0}$$ small, and $${-\Delta u + \lambda V(x)u = g(x,u)}$$ , $${\lambda > 0}$$ large. The potential V may change sign and g...

  • High Frequency Solutions for the Singularly-Perturbed One-Dimensional Nonlinear Schrödinger Equation. Felmer, Patricio; Martínez, Salomé; Tanaka, Kazunaga; Rabinowitz, P. // Archive for Rational Mechanics & Analysis;Nov2006, Vol. 182 Issue 2, p333 

    This article is devoted to the nonlinear Schrödinger equation [InlineMediaObject not available: see fulltext.] when the parameter ε approaches zero. All possible asymptotic behaviors of bounded solutions can be described by means of envelopes, or alternatively by adiabatic profiles. We...

  • Energy Growth in Schr�dinger's Equation with Markovian Forcing. Erdo>ilde;an, M. Burak; Killip, Rowan; Schlag, Wilhelm // Communications in Mathematical Physics;Sep2003, Vol. 240 Issue 1/2, p1 

    Schr�dinger's equation is considered on a one-dimensional torus with time dependent potential v(?,t)=?V(?)X(t), where V(?) is an even trigonometric polynomial and X(t) is a stationary Markov process. It is shown that when the coupling constant ? is sufficiently small, the average kinetic...

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sign out of this library

Other Topics