Mountain-Wave Momentum Flux in an Evolving Synoptic-Scale Flow

Chih-Chieh Chen; Durran, Dale R.; Hakim, Gregory J.
September 2005
Journal of the Atmospheric Sciences;9/1/2005, Vol. 62 Issue 9, p3213
Academic Journal
The evolution of mountain-wave-induced momentum flux is examined through idealized numerical simulations during the passage of a time-evolving synoptic-scale flow over an isolated 3D mountain of height h. The dynamically consistent synoptic-scale flow U accelerates and decelerates with a period of 50 h; the maximum wind arrives over the mountain at 25 h. The synoptic-scale static stability N is constant, so the time dependence of the nonlinearity parameter, ℇ(t) = Nh/U(t), is symmetric about a minimum value at 25 h. The evolution of the vertical profile of momentum flux shows substantial asymmetry about the midpoint of the cycle even though the nonlinearity parameter is symmetric. Larger downward momentum fluxes are found during the accelerating phase, and the largest momentum fluxes occur in the mid- and upper troposphere before the maximum background flow arrives at the mountain. For a period of roughly 15 h, this vertical distribution of momentum flux accelerates the lower-tropospheric zonal-mean winds due to low-level momentum flux convergence. Conservation of wave action and Wentzel–Kramers–Brillouin (WKB) ray tracing are used to reconstruct the time–altitude dependence of the mountain-wave momentum flux in a semianalytic procedure that is completely independent of the full numerical simulations. For quasi-linear cases, the reconstructions show good agreement with the numerical simulations, implying that the basic asymmetry obtained in the full numerical simulations may be interpreted using WKB theory. These results demonstrate that even slow variations in the mean flow, with a time scale of 2 days, play a dominant role in regulating the vertical profile of mountain-wave-induced momentum flux. The time evolution of cross-mountain pressure drag is also examined in this study. For almost-linear cases, the pressure drag is well predicted under steady-state linear theory by using the instantaneous incident flow. Nevertheless, for mountains high enough to preserve a moderate degree of nonlinearity when the synoptic-scale incident flow is strongest, the evolution of cross-mountain pressure drag is no longer symmetric about the time of maximum wind. A higher drag state is found when the cross-mountain flow is accelerating. These results suggest that the local character of the topographically induced disturbance cannot be solely determined by the instantaneous value of the nonlinearity parameter ℇ.


Related Articles

  • Large-Amplitude Mountain Wave Breaking over Greenland. Doyle, James D.; Shapiro, Melvyn A.; Qingfang Jiang; Bartels, Diana L. // Journal of the Atmospheric Sciences;9/1/2005, Vol. 62 Issue 9, p3106 

    A large-amplitude mountain wave generated by strong southwesterly flow over southern Greenland was observed during the Fronts and Atlantic Storm-Track Experiment (FASTEX) on 29 January 1997 by the NOAA G-IV research aircraft. Dropwindsondes deployed every 50 km and flight level data depict a...

  • The Interaction of Katabatic Flow and Mountain Waves. Part II: Case Study Analysis and Conceptual Model. Poulos, Gregory S.; Bossert, James E.; McKee, Thomas B.; Pielke Sr., Roger A. // Journal of the Atmospheric Sciences;Jun2007, Vol. 64 Issue 6, p1857 

    Via numerical analysis of detailed simulations of an early September 1993 case night, the authors develop a conceptual model of the interaction of katabatic flow in the nocturnal boundary layer with mountain waves (MKI). A companion paper (Part I) describes the synoptic and mesoscale...

  • Lee-Wave Resonances over Double Bell-Shaped Obstacles. Grubišić, Vanda; Stiperski, Ivana // Journal of the Atmospheric Sciences;May2009, Vol. 66 Issue 5, p1205 

    Lee-wave resonance over double bell-shaped obstacles is investigated through a series of idealized high-resolution numerical simulations with the nonhydrostatic Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model using a free-slip lower boundary condition. The profiles of...

  • Mountain-Wave-Like Spurious Waves Associated with Simulated Cold Fronts due to Inconsistencies between Horizontal and Vertical Resolutions. Iga, Shin-ichi; Tomita, Hirofumi; Satoh, Masaki; Goto, Koji // Monthly Weather Review;Jul2007, Vol. 135 Issue 7, p2629 

    A newly developed global nonhydrostatic model is used for life cycle experiments (LCEs) of baroclinic waves, and the resolution dependency of frontal structures is examined. LCEs are integrated for 12 days with horizontal grid intervals ranging from 223 to 3.5 km in a global domain. In general,...

  • Numerical Study on Vortices in the Middle Layer of Flow around a Large Mountain under Rotating Stratified Conditions. Yu Hozumi; Ueda, Hiromasa // Pure & Applied Geophysics;Oct2005, Vol. 162 Issue 10, p1779 

    Generation of cyclonic vortices in the middle layer of flow around a large mountain like Tibet and Rocky was investigated by means of a 3-D nonhydrostatic meteorological prognostic model. Special attention was paid to the effects of the earth�s rotation and stratification on the vortices...

  • The Evolution of Lee-Wave–Rotor Activity in the Lee of Pike’s Peak under the Influence of a Cold Frontal Passage: Implications for Aircraft Safety. Darby, Lisa S.; Poulos, Gregory S. // Monthly Weather Review;Oct2006, Vol. 134 Issue 10, p2857 

    A lee-wave–rotor system interacting with an approaching cold front in the lee of Pike’s Peak near Colorado Springs, Colorado, on 1 April 1997 is studied observationally and numerically. Dynamical effects associated with the approaching cold front caused the amplification of the...

  • Mountain Wave Signatures in MODIS 6.7-μm Imagery and Their Relation to Pilot Reports of Turbulence. Uhlenbrock, N. L.; Bedka, K. M.; Feltz, W. F.; Ackerman, S. A. // Weather & Forecasting;Jun2007, Vol. 22 Issue 3, p662 

    A technique for nowcasting turbulent mountain waves over the Front Range of the state of Colorado is investigated using Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor (6.7 μm) channel imagery. Pilot reports of turbulence were examined to determine the probability of...

  • Transient Mountain Waves and Their Interaction with Large Scales. Chih-Chieh Chen; Hakim, Gregory J.; Durran, Dale R. // Journal of the Atmospheric Sciences;Jul2007, Vol. 64 Issue 7, p2378 

    The impact of transient mountain waves on a large-scale flow is examined through idealized numerical simulations of the passage of a time-evolving synoptic-scale jet over an isolated 3D mountain. Both the global momentum budget and the spatial flow response are examined to illustrate the impact...

  • The Role of Upstream Waves and a Downstream Density Pool in the Growth of Lee Waves: Stratified Flow over the Knight Inlet Sill. Klymak, Jody M.; Gregg, Michael C. // Journal of Physical Oceanography;Jul2003, Vol. 33 Issue 7, p1446 

    Observations and modeling simulations are presented that illustrate the importance of a density contrast and the upstream response to the time dependence of stratified flow over the Knight Inlet sill. Repeated sections of velocity and density show that the flow during ebb and flood tides is...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics