TITLE

Enzyme-catalyzed amplified immunoassay for the detection of Toxoplasma gondii-specific IgG using Faradaic impedance spectroscopy, CV and QCM

AUTHOR(S)
Yanjun Ding; Hua Wang; Guoli Shen; Ruqin Yu
PUB. DATE
August 2005
SOURCE
Analytical & Bioanalytical Chemistry;Aug2005, Vol. 382 Issue 7, p1491
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
A highly sensitive electrochemical immunoassay for Toxoplasma gondii-specific IgG (Tg-IgG) in human serum has been developed that is based on an enzyme-catalyzed amplification due to the formation of an insoluble precipitate on the surface of a quartz crystal microbalance (QCM). T. gondii antigen (TgAg) was immobilized on the surface of a gold electrode in order to bind Tg-IgG, and this was followed by the addition of anti-Tg-IgG horseradish peroxidase conjugate (anti-Tg-IgG-HRP). Subsequent exposure to 3,3′-diaminobenzidine (DAB) led to the enzymatically-catalyzed amplified deposition of the oxidation products on the QCM surface in the presence of H2O2. The transduction methods electrochemical Faradaic impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to assay the resistance to electron transfer at the conductive support upon accumulation of the insoluble products. The precipitation process was monitored in real time by QCM. The assay conditions, including the concentration of immobilized TgAg and the dosage of anti-Tg-IgG-HRP conjugate, were optimized. It was found that the amount of precipitate that accumulated on the conductive QCM surface was determined by the concentration of the target analyte Tg-IgG and the time permitted for biocatalyzed precipitation. The technique was shown to give a linear electron transfer resistance response (as measured by EIS) for Tg-IgG dilutions ranging between 1:8000 and 1:200, and a detection limit of 1:9600 dilution.
ACCESSION #
17719863

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics