TITLE

Residual aqueous ozone determination by gas diffusion reverse flow injection analysis

AUTHOR(S)
Baeza, M.; Alonso, J.; Bartrolí, J.
PUB. DATE
May 2005
SOURCE
Analytical & Bioanalytical Chemistry;May2005, Vol. 382 Issue 2, p388
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
A novel system based on reverse flow injection analysis with a gaseous diffusion step (GD-r-FIA) has been developed for the analysis of ozone. It includes an automatic microburet injection system. The ozone diffuses through a microporous membrane of polyvinylidene difluoride (PVDF) from the donor stream to the acceptor stream containing nitrite ions. The nitrite concentration in the acceptor solution decreases due to the ozone reduction reaction. In this way, a simple indirect measurement of the ozone concentration can be performed using the Griess–Ilosvay reaction for the nitrite ion. This correlates with the decrease in absorbance of the azoic dye formed with the ozone concentration in the donor stream. The system has been optimised by investigating the effect of the nitrite concentration in the acceptor stream on the diffusion flow. The optimum nitrite concentration was set at 0.250 ppm with a flow rate of 1.5 ml/min. The efficiency of the ozone diffusion through the membrane was only 4.4%. This affects the average sensitivity, which is low (0.0092±0.0012 AU/ppm), although the detection limit is similar to that obtained with other reported methods (0.03 ppm). The main advantage of the system reported here is that it has a linear range that is an order of magnitude broader than those observed for other GD-FIA systems. This is especially useful for continuous monitoring systems, since the residual ozone concentration is normally between 0.05 and 5.0 ppm. Additionally, using the reverse flow injection analysis (FIA) technique minimises chemical consumption and residue generation. Finally, the stability of the ozone solution and the repeatability and reproducibility of the method have been studied.
ACCESSION #
17252639

 

Related Articles

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics