TITLE

Structural Characteristics of Convective Systems over South America Related to Cold-Frontal Incursions

AUTHOR(S)
Siqueira, Jose Ricardo; Rossow, William B.; Machado, Luiz Augusto Toledo; Pearl, Cindy
PUB. DATE
May 2005
SOURCE
Monthly Weather Review;May2005, Vol. 133 Issue 5, p1045
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
International Satellite Cloud Climatology Project (ISCCP DX) and microwave sensor data collected by the Tropical Rainfall Measuring Mission (TRMM) are used to identify and describe structural characteristics of convective systems (CSs) over continental South America (SA) related to cold-frontal incursions in a 3-yr period. An austral wet-season climatology for CS events of the three most important types of front–tropical convection interaction is built by applying latitude–time diagrams and a cloud-tracking method to DX data. Type 1 is characterized by the penetration of a cold front over subtropical SA that interacts with convection and moves with it into lower tropical latitudes. Type 2 refers to Amazon convection and its enhancement in a quasi-stationary northwest–southeast-oriented band extending from the Amazon to subtropical SA along with the passage of a cold front in the subtropics and characterizes the synoptic formation of the South Atlantic convergence zone. A quasi-stationary cold front over subtropical SA that has only weak interaction with tropical convection corresponds to type 3. Results show that the three types of front–tropical convection interaction strongly modulate deep convection over SA, producing mesoscale CSs with significant fractions of deep convective clouds and rain at their mature phase. Type 2 CSs (type 1 CSs) are constituted of larger deep convective cloud fractions with weaker (stronger) vertical development compared to type 1 CSs (type 3 CSs) in the Tropics (subtropics), resulting in larger rain fractions and less (more) presence of convective rain. Type 1 CSs have larger fractions of deep convective clouds and rain but with weaker vertical development in the subtropics than in the Tropics, showing that cold fronts organize convection more in area in the subtropics, but more in vertical extent in the Tropics. Life cycle variations of CS cloud and rain properties show tropical CSs with a more intense initial development and similar structural differences between the CS types and those found at their mature phase.
ACCESSION #
17239758

 

Related Articles

  • Comparison of Narrow Bipolar Events with Ordinary Lightning as Proxies for Severe Convection. Jacobson, Abram R.; Heavner, Mathew J. // Monthly Weather Review;May2005, Vol. 133 Issue 5, p1144 

    Narrow bipolar events (NBEs) are a recently studied intracloud electrical-discharge process. It is speculated that an NBE is instigated by the extensive atmospheric shower of an energetic cosmic ray. NBEs cause significant relaxation of the charge separation within the electrified cloud in a...

  • Convective Profile Constants Revisited. Grachev, A. A.; Fairall, C. W.; Bradley, E. F. // Boundary-Layer Meteorology;Mar2000, Vol. 94 Issue 3, p495 

    This paper examines the interpolation between Businger–Dyer (Kansas-type) formulae, ϕu = (1 -1 6ζ )-1/4 and ϕt = (1 - 16ζ )-1/2, and free convection forms. Based on matching constraints, the constants, au and at, in the convective flux-gradient relations, ϕu = (1 -...

  • Convective Structures in a Cold Air Outbreak over Lake Michigan during Lake-ICE. Zurn-Birkhimer, Suzanne M.; Agee, Ernest M.; Sorbjan, Zbigniew // Journal of the Atmospheric Sciences;7/1/2005, Vol. 62 Issue 7, p2414 

    The Lake-Induced Convection Experiment provided special field data during a westerly flow cold air outbreak (CAO) on 13 January 1998, which has afforded the opportunity to examine in detail an evolving convective boundary layer. Vertical cross sections prepared from these data, extending from...

  • Possible Effects of Collisional Breakup on Mixed-Phase Deep Convection Simulated by a Spectral (Bin) Cloud Model. Seifert, Axel; Khain, Alexander; Blahak, Ulrich; Beheng, Klaus D. // Journal of the Atmospheric Sciences;6/1/2005, Vol. 62 Issue 6, p1917 

    The effects of the collisional breakup of raindrops are investigated using the Hebrew University Cloud Model (HUCM). The parameterizations, which are combined in the new breakup scheme, are those of Low and List, Beard and Ochs, as well as Brown. A sensitivity study reveals strong effects of...

  • Convective Circulations Induced by Surface Heterogeneities. Souza, Enio P.; Renno, Nilton O. // Journal of the Atmospheric Sciences;9/1/2000, Vol. 57 Issue 17, p2915 

    Deals with a study that proposed a theory for convective circulations induced by surface heterogeneities. Observations recorded on the location of two sites; Analysis of the theory; Results; Conclusions.

  • Convective Precursors and Predictability in the Tropical Western Pacific. Sherwood, Steven C. // Monthly Weather Review;Dec99, Vol. 127 Issue 12, p2977 

    Conditions leading to convective outbreak in the Tropics are investigated by multivariate analysis of sounding and satellite data from the tropical western Pacific area. Circumstances that make the prediction problem difficult are discussed and addressed by applying linear...

  • Convective Precipitation Variability as a Tool for General Circulation Model Analysis. DeMott, Charlotte A.; Randall, David A.; Khairoutdinov, Marat // Journal of Climate;Jan2007, Vol. 20 Issue 1, p91 

    Precipitation variability is analyzed in two versions of the Community Atmospheric Model (CAM), the standard model, CAM, and a “multiscale modeling framework” (MMF), in which the cumulus parameterization has been replaced with a cloud-resolving model. Probability distribution...

  • Evolution of a Quasi-Linear Convective System Sampled by Phased Array Radar. NEWMAN, JENNIFER F.; HEINSELMAN, PAMELA L. // Monthly Weather Review;Nov2012, Vol. 140 Issue 11, p3467 

    On 2 April 2010, a quasi-linear convective system (QLCS) moved eastward through Oklahoma during the early morning hours. Wind damage in Rush Springs, Oklahoma approached EF1-scale intensity and was likely associated with a mesovortex along the leading edge of the QLCS. The evolution of the QLCS...

  • On The Relationship between the QBO and Tropical Deep Convection. Collimore, Christopher C.; Martin, David W.; Hitchman, Matthew H.; Huesmann, Amihan; Waliser, Duane E. // Journal of Climate;Aug2003, Vol. 16 Issue 15, p2552 

    The height and amount of tropical deep convection are examined for a correlation with the stratospheric quasi-biennial oscillation (QBO). A new 23-yr record of outgoing longwave radiation (OLR) and a corrected 17-yr record of the highly reflective cloud (HRC) index are used as measures of...

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics