# Stability remarks to the obstacle problem forp-Laplacian type equations

## Related Articles

- On dynamics of quantum states generated by the Cauchy problem for the SchrÃ¶dinger equation with degeneration on the half-line. Sakbaev, V. // Journal of Mathematical Sciences;Jun2008, Vol. 151 Issue 1, p2741
The paper considers the Cauchy problem for the SchrÃ¶dinger equation with operator degenerate on the semiaxis and the family of regularized Cauchy problems with uniformly elliptic operators whose solutions approximate the solution of the degenerate problem. The author studies the strong and...

- Large solutions to the p-Laplacian for large p. García-Melián, Jorge; Rossi, Julio; Lis, José // Calculus of Variations & Partial Differential Equations;Feb2008, Vol. 31 Issue 2, p187
In this work we consider the behaviour for large values of p of the unique positive weak solution u p to Î” p u = u q in Î©, u = +âˆž on $$\partial\Omega$$ , where q > p âˆ’ 1. We take q = q( p) and analyze the limit of u p as p â†’ âˆž. We find that when q( p)/ p...

- Applications of Equilibrium Problems to a Class of Noncoercive Variational Inequalities. Chadli, O.; Liu, Z.; Yao, J. C. // Journal of Optimization Theory & Applications;Jan2007, Vol. 132 Issue 1, p89
In this paper, we are interested in the existence of solutions for a class of noncoercive variational inequalities involving a p-Laplacian type operator. Our approach is based essentially on equilibrium problems and arguments from recession analysis. Our results are of two types: the first is...

- Positive solutions for nonlinear Neumann problems with concave and convex terms. Papageorgiou, Nikolaos; Smyrlis, George // Positivity;Jun2012, Vol. 16 Issue 2, p271
We consider a nonlinear elliptic Neumann problem driven by the p-Laplacian with a reaction that involves the combined effects of a 'concave' and of a 'convex' terms. The convex term ( p-superlinear term) need not satisfy the Ambrosetti-Rabinowitz condition. Employing variational methods based on...

- Elliptic operators and Choquet capacities. Solynin, A. Yu. // Journal of Mathematical Sciences;Apr2010, Vol. 166 Issue 2, p210
Choquet capacities generated by solutions of certain elliptic partial differential equations are discussed. Bibliography: 11 titles.

- The mean-value theorem for elliptic operators on stratified sets. Oshchepkova, S.; Penkin, O. // Mathematical Notes;Apr/May2007, Vol. 81 Issue 3/4, p365
In this paper, an analog of the mean-value theorem for harmonic functions is proved for an elliptic operator on the stratified set of â€œstratifiedâ€ spheres whose radius is sufficiently small. In contrast to the classical case, the statement of the theorem has the form of a special...

- The infinity Laplacian in infinite dimensions. Gaspari, Thierry // Calculus of Variations & Partial Differential Equations;Nov2004, Vol. 21 Issue 3, p243
We study three properties of real-valued functions defined on a Banach space: The absolutely minimizing Lipschitz functions, the viscosity solutions of the infinity Laplacian partial differential equation, and the functions which satisfy comparison with cones. We prove that these notions are...

- Lipschitz continuity of state functions in some optimal shaping. Brian�on, Tanguy; Hayouni, Mohammed; Pierre, Michel // Calculus of Variations & Partial Differential Equations;May2005, Vol. 23 Issue 1, p13
We prove local Lipschitz continuity of the solution to the state equation in two kinds of shape optimization problems with constraint on the volume: the minimal shaping for the Dirichlet energy, with no sign condition on the state function, and the minimal shaping for the first eigenvalue of the...

- Mathematical treatment of the discharge of a laminar hot gas in a stagnant colder atmosphere. Antontsev, S. N.; Díaz, J. // Journal of Applied Mechanics & Technical Physics;Jul2008, Vol. 49 Issue 4, p681
We study the boundary-layer approximation of the classical mathematical model that describes the discharge of a laminar hot gas in a stagnant colder atmosphere of the same gas. We prove the existence and uniqueness of solutions to a nondegenerate problem (without zones of stagnation of gas...