TITLE

Organization and Environmental Properties of Extreme-Rain-Producing Mesoscale Convective Systems

AUTHOR(S)
Schumacher, Russ S.; Johnson, Richard H.
PUB. DATE
April 2005
SOURCE
Monthly Weather Review;Apr2005, Vol. 133 Issue 4, p961
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
This study examines the radar-indicated structures and other features of extreme rain events in the United States over a 3-yr period. A rainfall event is defined as “extreme” when the 24-h precipitation total at one or more stations surpasses the 50-yr recurrence interval amount for that location. This definition yields 116 such cases from 1999 to 2001 in the area east of the Rocky Mountains, excluding Florida. Two-kilometer national composite radar reflectivity data are then used to examine the structure and evolution of each extreme rain event. Sixty-five percent of the total number of events are associated with mesoscale convective systems (MCSs). While a wide variety of organizational structures (as indicated by radar reflectivity data) are seen among the MCS cases, two patterns of organization are observed most frequently. The first type has a line, often oriented east–west, with “training” convective elements. It also has a region of adjoining stratiform rain that is displaced to the north of the line. The second type has a back-building or quasi-stationary area of convection that produces a region of stratiform rain downstream. Surface observations and composite analysis of Rapid Update Cycle Version 2 (RUC-2) model data reveal that training line/adjoining stratiform (TL/AS) systems typically form in a very moist, unstable environment on the cool side of a preexisting slow-moving surface boundary. On the other hand, back-building/quasi-stationary (BB) MCSs are more dependent on mesoscale and storm-scale processes, particularly lifting provided by storm-generated cold pools, than on preexisting synoptic boundaries.
ACCESSION #
16872357

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics