TITLE

Voltammetric behavior and quantification of the anti-leukemia drug imatinib in bulk form, pharmaceutical formulation, and human serum at a mercury electrode

AUTHOR(S)
Hammam, E.; El-Desoky, H. S.; Tawfik, A.; Ghoneim, M. M.
PUB. DATE
July 2004
SOURCE
Canadian Journal of Chemistry;Jul2004, Vol. 82 Issue 7, p1203
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Imatinib (GleevecTM, ST1571) exemplifies the successful development of a rationally designed molecularly targeted therapy for treatment of a specific cancer. It is a highly promising new drug for the treatment of chronic myelogenous leukemia in blast crisis, in the accelerated or chronic phase after interferon failure or intolerance. The electrochemical behavior of imatinib was studied in Britton–Robinson (B–R) buffers of pH 2 to 11 by means of cyclic voltammetry at a hanging mercury drop electrode. The voltammograms showed a single 2-electron irreversible cathodic peak, which may be attributed to reduction of the C=O double bond of the imatinib molecule. Imatinib exhibited a strong adsorption onto the electrode surface especially in B–R buffers of pH 6 and 7. The adsorptive response of the drug was optimized with respect to the pH of the electrolysis medium, accumulation variables, and instrumental parameters using a square-wave stripping voltammetry technique. A fully validated, simple, sensitive, precise, and selective square-wave adsorptive cathodic stripping voltammetric procedure is described for trace determination of imatinib. The limits of detection (LOD) and quantitation (LOQ) of the bulk imatinib, following preconcentration for 150 s onto the hanging mercury drop electrode, were found to be 2.6 × 10–10 and 8.7 × 10–10 mol/L, respectively. The proposed procedure was successfully applied for quantitation of imatinib in pharmaceutical formulation (Glivec®) and spiked human serum, without the necessity for sample pretreatment or time-consuming extraction or evaporation steps prior to analysis of the drug. LOD and LOQ of 4.6 × 10–10 and 1.5 × 10–9 mol/L, respectively, were achieved after 120 s of preconcentration of the drug spiked in human serum.
ACCESSION #
14703161

 

Related Articles

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics