Light outcoupling efficiency of top-emitting organic light-emitting diodes

Smith, L. H.; Wasey, J. A. E.; Barnes, W. L.
April 2004
Applied Physics Letters;4/19/2004, Vol. 84 Issue 16, p2986
Academic Journal
We report results obtained from modeling the light outcoupling efficiency of top–emitting organic light-emitting diode (OLED) structures and compare them with results from conventional substrate-emitting structures. We investigate two types of emissive material, small molecule and conjugated polymers, and study three different cathode materials; aluminum, silver, and calcium. We show that top-emitting OLEDs may have outcoupling efficiencies comparable to their substrate-emitting counterparts, and that the choice of cathode material is critical to the optical performance of the device. © 2004 American Institute of Physics.


Related Articles

  • High efficiency low operating voltage polymer light-emitting diodes with aluminum cathode. Deng, X.Y.; Lau, W.M.; Wong, K.Y.; Low, K.H.; Chow, H.F.; Cao, Y. // Applied Physics Letters;5/3/2004, Vol. 84 Issue 18, p3522 

    By blending poly(ethylene glycol) (PEG) into an electroluminescence (EL) polymer, significantly enhanced EL efficiency in a polymer light-emitting diode (PLED) with aluminum electrode was achieved. An orange-color-emitting PLED with 10 wt % PEG blending achieved device efficiencies exceeding 2.6...

  • Efficient multilayer white polymer light-emitting diodes with aluminum cathodes. Niu, Xiaodi; Qin, Chuanjiang; Zhang, Baohua; Yang, Junwei; Xie, Zhiyuan; Cheng, Yanxiang; Wang, Lixiang // Applied Physics Letters;5/14/2007, Vol. 90 Issue 20, p203513 

    Efficient multilayer white polymer light-emitting diodes (WPLEDs) with aluminum cathodes are fabricated. The multilayer structure is composed of a water soluble hole-injection layer, a toluene-soluble emissive layer, and an alcohol-soluble emissive layer. The polarity difference of the solvents...

  • Modeling of organic light-emitting diodes with graded concentration in the emissive multilayer. Gusso, A.; Ma, Dongge; Hümmlegen, I. A.; da Luz, M. G. E. // Journal of Applied Physics;2/15/2004, Vol. 95 Issue 4, p2056 

    We model the electrical behavior of organic light-emitting diodes whose emissive multilayer is formed by blends of an electron transporting material, tris-(8-hydroxyquinoline) aluminum (Alq[sub 3]) and a hole transporting material, N,N[sup ′]-diphenyl-N,N[sup ′]-bis(1,1[sup...

  • Influence of electron transport layer thickness on optical properties of organic light-emitting diodes. Guohong Liu; Yong Liu; Baojun Li; Xiang Zhou // Journal of Applied Physics;6/7/2015, Vol. 117 Issue 21, p214505-1 

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N'-diphenyl-N,N'-bis(1-naphthyl)-[1,1'-biphthyl]-4,4'-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3) heterojunction based organic light-emitting diodes...

  • Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array. Liu, C.; Kamaev, V.; Vardeny, Z. V. // Applied Physics Letters;4/4/2005, Vol. 86 Issue 14, p143501 

    We fabricated an organic light-emitting diode using a π-conjugated polymer emissive layer sandwiched between two semitransparent electrodes: an optically thin gold film anode, whereas the cathode was in the form of an optically thick aluminum (Al) film with patterned periodic subwavelength...

  • The effect of C60 doping on the device performance of organic light-emitting diodes. Lee, Jun Yeob; Kwon, Jang Hyuk // Applied Physics Letters;2/7/2005, Vol. 86 Issue 6, p063514 

    The effect of C60 doping in the hole transport layer on the device performance of phosphorescent light-emitting diodes was investigated by changing the C60 content from 0% to 3%. Doping of C60 in 1,3,5-tris(N,N-bis-(4,5-methoxyphenyl)-aminophenyl)benzol resulted in efficient hole injection and...

  • Effect of polymer-insulating nanolayers on electron injection in polymer light-emitting diodes. Jong Hyeok Park, Michael J.; O Ok Park; Jae-Woong Yu; Jai Kyeong Kim; Young Chul Kim // Applied Physics Letters;3/8/2004, Vol. 84 Issue 10, p1783 

    We report the effect of polymer-insulating nanolayers on electron injection in the polymer light-emitting diodes (PLEDs) in which a hole is the major charge carrier. Several different polymer nanolayers with varying dielectric constants were placed between the emitting layer and the aluminum...

  • Hybrid light-emitting polymer device fabricated on a metallic nanowire array. Strevens, A. E.; Drury, A.; Lipson, S. M.; Kröll, M.; Blau, W. J.; Hörhold, H. H. // Applied Physics Letters;4/4/2005, Vol. 86 Issue 14, p143503 

    An electrode comprised of a copper nanowire array, fabricated by electrodeposition into a porous alumina membrane, is incorporated into a single-layer organic light-emitting device. The 48-nm-diameter copper nanowires form an array of electrical nanocontacts. Current–voltage and...

  • Efficient green light-emitting diodes from a phenylated derivative of poly(p-phenylene–vinylene). Cacialli, F.; Friend, R. H.; Haylett, N.; Daik, R.; Feast, W. J.; dos Santos, D. A.; Bre´das, J. L. // Applied Physics Letters;12/16/1996, Vol. 69 Issue 25, p3794 

    We have used polyvinylcarbazole, PVK, in combination with poly(p-phenylene vinylene), PPV and a green-emitting, soluble derivative, poly(4,4′-diphenylene diphenylvinylene) or briefly PDPV, to fabricate triple-layer light-emitting diodes PPV/PVK/PDPV/metal, with indium tin oxide as the...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics