TITLE

Positive solutions to boundary value problems of p-Laplacian with fractional derivative

AUTHOR(S)
Dong, Xiaoyu; Bai, Zhanbing; Zhang, Shuqin
PUB. DATE
January 2017
SOURCE
Boundary Value Problems;1/3/2017, Vol. 2017 Issue 1, p1
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
In this article, we consider the following boundary value problem of nonlinear fractional differential equation with p-Laplacian operator: where $1<\alpha\leq2$ is a real number, $D^{\alpha}$ is the conformable fractional derivative, $\phi_{p}(s)=\vert s\vert ^{p-2}s$ , $p>1$ , $\phi_{p}^{-1}=\phi_{q}$ , $1/p+1/q=1$ , and $f:[0, 1]\times[0,+\infty)\to[0,+\infty)$ is continuous. One of the difficulties here is that the corresponding Green's function $G(t, s)$ is singular at $s= 0$ . By the use of an approximation method and fixed point theorems on cone, some existence and multiplicity results of positive solutions are acquired. Some examples are presented to illustrate the main results.
ACCESSION #
120533130

 

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics