Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering

Raschke, Markus B.; Lienau, Christoph
December 2003
Applied Physics Letters;12/15/2003, Vol. 83 Issue 24, p5089
Academic Journal
For linear light scattering in apertureless scanning near-field optical microscopy, we have studied the correlations between the tip radius of the probe, signal strength, spatial resolution, and sample material. Pronounced variations of the near-field distance dependence on tip shape and dielectric function of the sample are observed. For very sharp metal tips, the scattered near-field signal decays on a 5 nm length scale. Despite this highly localized tip–sample coupling, the contrast is found to depend sensitively on the vertical composition of the sample on a length scale given by the penetration depth of the incident light. The resulting implications on the use of the technique as an analytic probe method are discussed. © 2003 American Institute of Physics.


Related Articles

  • High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Veerman, J. A.; Otter, A. M.; Kuipers, L.; van Hulst, N. F. // Applied Physics Letters;6/15/1998, Vol. 72 Issue 24 

    We have improved the optical characteristics of aluminum-coated fiber probes used in near-field scanning optical microscopy by milling with a focused ion beam. This treatment produces a flat-end face free of aluminum grains, containing a well-defined circularly-symmetric aperture with...

  • Computer simulations on near-field scanning optical microscopy: Can subwavelength resolution be obtained using uncoated optical fiber probes? von Freymann, G.; Schimmel, Th.; Wegener, M.; Hanewinkel, B.; Knorr, A.; Koch, S. W. // Applied Physics Letters;8/31/1998, Vol. 73 Issue 9 

    Recent experiments claim that subwavelength resolution can be obtained with an optical scanning microscope using uncoated optical fiber probes. In these experiments, linearly polarized light is sent down the fiber which is reflected and depolarized in the tip-sample region. The internally...

  • Influence of tip modulation on image formation in scanning near-field optical microscopy. Walford, J. N.; Porto, J. A.; Carminati, R.; Greffet, J.-J.; Adam, P. M.; Hudlet, S.; Bijeon, J.-L.; Stashkevich, A.; Royer, P. // Journal of Applied Physics;5/1/2001, Vol. 89 Issue 9, p5159 

    Modulation of the probe height in a scanning near-field optical microscope (SNOM) is a technique that is commonly used for both distance control and separation of the near-field signal from a background. Detection of higher harmonic modulated signals has also been used to obtain an improvement...

  • Micromachined photoplastic probe for scanning near-field optical microscopy. Genolet, G.; Despont, M.; Vettiger, P.; Staufer, U.; Noell, W.; de Rooij, N. F.; Cueni, T.; Bernal, M.-P.; Marquis-Weible, F. // Review of Scientific Instruments;Oct2001, Vol. 72 Issue 10, p3877 

    We present a hybrid probe for scanning near-field optical microscopy (SNOM), which consists of a micromachined photoplastic tip with a metallic aperture at the apex that is attached to an optical fiber, thus combining the advantages of optical fiber probes and micromachined tips. The tip and...

  • Simultaneous scanning tunneling microscope and collection mode scanning near-field optical.... Garcia-Parajo, M.; Cambril, E. // Applied Physics Letters;9/19/1994, Vol. 65 Issue 12, p1498 

    Examines the advantages of gold coated single optical fiber as a tunneling and near-field optical fiber probes. Details on the resolution and image contrast of scanning tunneling microscope (STM) and scanning near-field optical microscope; Analysis on reliable STM distance regulation;...

  • Near-field optical microscope using a silicon-nitride probe. van Hulst, N.F.; Moers, M.H.P.; Noordman, O.F.J.; Tack, R.G.; Segerink, F.B.; Bolger, B. // Applied Physics Letters;2/1/1993, Vol. 62 Issue 5, p461 

    Describes the operation of an alternative scanning near-field optical microscope. Use of microfabricated silicon-nitride probe with integrated cantilever for optical microscopy; Effect of adhesion forces on coupling to the evanescent wave; Comparison of optical images obtained by using SiN...

  • High frequency-bandwidth optical technique to measure thermal elongation time responses of near-field scanning optical microscopy probes. Biehler, B.; La Rosa, A. H. // Review of Scientific Instruments;Nov2002, Vol. 73 Issue 11, p3837 

    A near-field scanning optical microscopy (NSOM) probe elongates when light is coupled into it. The time response of this thermal process is measured here by a new optical technique that exploits the typical flat-apex morphology of the probe as a mirror in a Fabry-Perot type cavity. Pulsed laser...

  • Direct measurement of the absolute value of the interaction force between the fiber probe and the sample in a scanning near-field optical microscope. Lapshin, D. A.; Letokhov, V. S.; Shubeita, G. T.; Sekatskii, S. K.; Dietler, G. // Applied Physics Letters;8/19/2002, Vol. 81 Issue 8, p1503 

    The absolute values of the force exerted by the fiber probe of a scanning near-field optical microscope onto the surface were measured using an atomic force microscope in ambient conditions. We demonstrate that a usually neglected static attraction force is dominant at small dither amplitudes...

  • Micromachined aperture probe tip for multifunctional scanning probe microscopy. Noell, W.; Abraham, M. // Applied Physics Letters;3/10/1997, Vol. 70 Issue 10, p1236 

    Examines a micromachined aperture tip developed for near-field scanning optical microscopy. Illustration of the advantages of the probe over commonly used fiber probes; Fabrication of the aperture tip in a reliable batch process; Attachment of the tip to an optical fiber by a microassembly...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics