TITLE

Challenges of Cancer Drug Design A Drug Metabolism Perspective

AUTHOR(S)
Sanchez, R.I.; Mesia-Vela, S.; Kauffman, F.C.
PUB. DATE
May 2001
SOURCE
Current Cancer Drug Targets;May2001, Vol. 1 Issue 1, p1
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
The time course and duration of action of drugs used in cancer chemotherapy are greatly influenced by the molecular and biochemical properties of enzymes associated with their metabolism. Variation in the response of individual patients to cancer chemotherapeutic agents is in large measure due to genetic and environmental factors that impinge on specific enzymes belonging to the two major classes of drug metabolizing enzymes. Current knowledge of the molecular biology and biochemistry of phase I drug metabolizing enzymes (cytochrome P450, flavin-containing and xanthine oxidases, NADPH quinone reductase, and aldehyde and dihydropyridine dehydrogenases), and phase II enzymes (glucuronosyl-, sulfo-, N-acetyl-, and glutathione transferases, and hydrolases) is reviewed briefly. Advances in understanding genetic and environmental factors that influence activities of phase I and phase II pathways of drug metabolism are discussed in the first sections of this review followed by a consideration of the influence of drug metabolism on the actions of agents currently used in the treatment of cancer. Emphasis is given to drugs that have recently been introduced into the armamentarium of cancer chemotherapy including inhibitors of chromatin function, target-based inhibitors of signal transduction and cyclin-dependent kinases, and angiogenesis inhibitors acting on metalloproteinases, epithelial cell growth, angiogenesis stimulation, and endothelial-specific integrins.
ACCESSION #
11135750

 

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics