Assessment of Inorganic Bonded Paperboards Produced From Kraft and Recycled Newsprint

Owoyemi J. M; Ajayi B.; Ogunrinde O. S.
March 2016
Key Engineering Materials;2016, Vol. 668, p322
Academic Journal
Homogeneous cement bonded paperboards were made with recycled newsprints and Kraft paper with ordinary Portland cement and curing reagent. Boards were produced at the blending proportions of 100:0, 50:50 and 0:100 respectively and at cement/ paper ratio of 1:1, 2:1 and 3:1 respectively. Dimensional movements were evaluated to investigate the effect of the variables used in board manufacturing before and after exposure to accelerated aging tests procedure. Increase in mixing ratio and blending proportion caused decrease in Thickness Swelling (TS) and Water Absorption (WA) while TS and WA of the untreated boards were lower than the accelerated aging treated boards. The dimensional movement of Kraft paper was higher than that of recycled newsprint before and after accelerated aging treatment. The strongest and most dimensionally stable board was produced at the highest level of cement/ paper ratio. The pre- accelerated ageing test carried out showed that mechanical properties were higher 2:1 and 3:1 paper cement mixing ratios. Kraft paper produced the strongest and most dimensionally stable board than recycled newsprint. From this study Kraft paper and recycled newsprint proved to be suitable for the manufacture of cement bonded paperboard capable of meeting the needs in core and low cost housing construction.


Related Articles

  • Use of ceramic sanitaryware as an alternative for the development of new sustainable binders. REIG, Lucía; BORRACHERO, María V.; MONZÓ, José M.; SAVASTANO JR., Holmer; TASHIMA, Mauro M.; PAYÁ, Jordi // Key Engineering Materials;2016, Vol. 668, p172 

    Large amounts of ceramic sanitary-ware waste are generated in both the production process and construction and demolition practices. This waste contains amorphous phases that may react with the Portlandite that originates during Portland cement hydration or with an alkali solution, leading to a...

  • Study on the Puzzolanic effect of sugarcane bagasse ash from Taretan, Michoacán, Mexico, on a portland cement mortar. Rodríguez Bucio J. L.; Reyes-Araiza J. L.; Alonso Guzmán, E. M.; Manzano-Ramírez A.; Ramírez Jiménez R.; Martínez Molina W.; Cobreros-Rodríguez C.; Pérez Rea L. // Key Engineering Materials;2016, Vol. 668, p367 

    Since the construction industry is responsible for 30% of the CO2 emissions, one way to reduce the impact of the construction activity is to substitute ordinary Portland cement by pozzolanic materials. The application of using agricultural waste in the production of pozzolanic material is...

  • Concrete Water Footprint Assessment Methodologies. MACK, Yazmin Lisbeth; OLIVEIRA, Lidiane Santana; JOHN, Vanderley Moacyr // Key Engineering Materials;2016, Vol. 668, p247 

    Concrete is the single most widely used material in the world and is only surpassed by water in terms of consumption. By 2013, 4 billion tonnes of Portland cement were produced worldwide, enough to produce about 32 billion tonnes of concrete, which represents more than 4.6 tonnes of concrete per...

  • Ternary blended cementitious matrix for vegetable fiber reinforced composites. Mármol, G.; Savastano Jr., H.; Bonilla, M.; Borrachero, M. V.; Monzó, J.; Soriano, L.; Payá, J. // Key Engineering Materials;2016, Vol. 668, p3 

    The present work analyses the behaviour of different binder matrices in order to implement the addition of paper pulp as reinforcement for cementitious composites and assesses the composites flexural properties with time. To prevent microfibers degradation in high-alkaline environments, lower...

  • Macro, micro and nano scale bamboo fiber as a potential reinforcement for composites. da Costa Correia, Viviane; Maria Siqueira, Fabíola; Donizetti Dias, Rafael; Savastano Junior, Holmer // Key Engineering Materials;2016, Vol. 668, p11 

    Vegetal fibers are obtained from leaves, stalks, culms, fruit and seeds, and have been used in the macro, micro and nano scale as partial replacement of synthetic fibers in organic and inorganic matrices. Bamboo has high strength fibers, and is one of main nonwood resources and is available in...

  • Study of the potential employment of Malvaceae Species in composites materials. Gama Guimarães, Bárbara Maria; Cayuela Marín, Diana; Fernando Zonatti, Welton; Mantovani, Waldir; Relvas, Cátia; Cunha, Fernando; Fangueiro, Raul; Savastano Júnior, Holmer; Baruque-Ramos, Júlia // Key Engineering Materials;2016, Vol. 668, p75 

    The employ of vegetal fibers for textiles and composites represents a great potential in economic and social sustainable development. Some Malvaceae species are considered tropical cosmopolitans, such as from Sida genus. Several species of this genus provide excellent textile bast fibers, which...

  • Synthesis Of Silver Nanoparticles With Potential Antifungical Activity For Bamboo Treatment. Pandoli, Omar; Ventura Pereira-Meirelles, Fatima; Lobo Lobo Luz, Eric Monteiro; Assumpção, Aline; dos Santos Martins, Raquel; del Rosso, Tommaso; Ghavami, Khosrow // Key Engineering Materials;2016, Vol. 668, p86 

    To increase the durability of bamboo it is important to find an easy method to fill the micro and meso structure of the biological matrix using a nano-structural material with an anti- fungical activity. A colloidal solution of silver nanoparticle (Ag-NPs) is a dispersion of metal nanoparticle...

  • Sheath bamboo leaves used at high pressure architect. GARCIA, Juliana; JOHN, Vanderley // Key Engineering Materials;2016, Vol. 668, p92 

    Sheath bamboo leaves (SBL) are potential lignocelluloses waste, aimed to produce laminated architectonic coatings. In this work was studied the surface interaction among the SBL and three types of adhesive: Polyvinyl Acetate (PVAc), Castor oil Polyurethane Adhesive bi- component (Vegetal PU),...

  • Analysis of fiber reinforced laminated timber beams. Abade Bertoline, Carlos Augusto; Tadeu Mascia, Nilson; Donizeti Basaglia, Cilmar; Fazendeiro Dodadon, Bruno // Key Engineering Materials;2016, Vol. 668, p100 

    The necessity to restore the design specifications of a determined structure, combined with cost, weight and environmental impact reduction makes the use of high performance composite systems, involving, either synthetic or natural materials, interesting. By applying a layer of fiber...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics