Field-induced cation migration in Cu oxide films by in situ scanning tunneling microscopy

Singh, J. P.; Lu, T.-M.; Wang, G.-C.
June 2003
Applied Physics Letters;6/30/2003, Vol. 82 Issue 26, p4672
Academic Journal
We observed the formation of Cu metallic nanoscale structures of ∼20-nm diameter and ∼2-nm height on a Cu[SUB2]O covered polycrystalline Cu film under an applied field using a scanning tunneling) microscope tip in a high vacuum condition. We interpreted the results as the Cu cation transport through the copper oxide film towards the surface when a positive biased voltage (>1.5 V) was applied to the film to lower the activation energy of the cation migration. Scanning tunneling spectroscopy measurements showed that the field-induced nanostructures were pure metallic Cu with a characteristic broad peak near 20.45 eV. No structural change was observed when a negative bias was applied to the film.


Related Articles

  • Formation of order molecular nanostructures on the Si(111)-(7×7) surface by patterned assembly. Zhang, Y. P.; Yong, K. S.; Lai, Y. H.; Xu, G. Q.; Wang, X. S. // Applied Physics Letters;10/4/2004, Vol. 85 Issue 14, p2926 

    The well-defined and patterned copper clusters formed on the Si(111)-(7×7) surface have been employed as a template for selective binding of molecules, forming ordered molecular nanostructures. Scanning tunneling microscopic studies show that thiophene molecules preferentially bind to the...

  • Low-temperature scanning tunneling microscope for use on artificially fabricated nanostructures. Wildöer, J. W. G.; van Roy, A. J. A.; van Kempen, H.; Harmans, C. J. P. M. // Review of Scientific Instruments;Sep94, Vol. 65 Issue 9, p2849 

    A scanning tunneling microscope (STM) has been developed, dedicated for use on artificially fabricated nanostructures at low temperatures. With this STM mesoscopic phenomena can be studied, combining the unique possibilities of scanning tunneling microscopy and artificially fabricated...

  • Nanometer scale structure fabrication with the scanning tunneling microscope. Staufer, U.; Wiesendanger, R.; Eng, L.; Rosenthaler, L.; Hidber, H. R.; Güntherodt, H.-J.; Garcia, N. // Applied Physics Letters;7/27/1987, Vol. 51 Issue 4, p244 

    Nanometer scale structures have been produced on atomically flat surfaces of metallic glasses using the scanning tunneling microscope in the tunneling mode with enhanced local current densities and strong electric fields. Depending on the current and the electric field enhanced diffusion, local...

  • Construction of silicon nanocolumns with the scanning tunneling microscope. Ostrom, R.M.; Tanenbaum, D.M. // Applied Physics Letters;8/24/1992, Vol. 61 Issue 8, p925 

    Examines the construction of silicon nanocolumns with the scanning tunneling microscope (STM). Details on the atom-sliding manipulations; Characterization of the nanocolumns; Ability of measuring the shapes of nanostructures with a STM; Benefit of the methodology used.

  • Regular artificial nanometer-scale structures fabricated with scanning tunneling microscope. Gu, Q.J.; Liu, N. // Applied Physics Letters;4/3/1995, Vol. 66 Issue 14, p1747 

    Examines the use of scanning tunneling microscope to fabricate artificial nanometer-scale structures. Extraction of atoms from silicon(III)7 7 surfaces; Calculation of voltage for fabricating grooves; Details on the inherent structure properties of silicon surface.

  • Stability, resolution, and tip–tip imaging by a dual-probe scanning tunneling microscope. Grube, Holger; Harrison, B. Craig; Jia, Jinfeng; Boland, John J. // Review of Scientific Instruments;Dec2001, Vol. 72 Issue 12, p4388 

    A scanning tunneling microscope (STM) comprised of two mechanically and electrically independent probes is described. This dual-probe STM is capable of atomic resolution imaging with either tip. The two probes have five combined degrees of freedom, which allow them to be positioned together at...

  • Nanometer-scale features produced by electric-field emission. McBride, S.E.; Wetsel Jr., G.C. // Applied Physics Letters;12/2/1991, Vol. 59 Issue 23, p3056 

    Reports on the formation of nanometer-scale features on the metallic surfaces using a scanning tunneling microscope instrument. Composition of the instrument; Characterization of the sample surface; Range of the form of the created features.

  • Nanometer-scale imaging with an ultrafast scanning tunneling microscope. Steeves, G. M.; Elezzabi, A. Y.; Freeman, M. R. // Applied Physics Letters;1/26/1998, Vol. 72 Issue 4, p504 

    We present experimental data demonstrating the spatial resolution of an ultrafast junction mixing scanning tunneling microscope (JM-STM). The experiment uses a patterned metal-on-metal (Ti/Au) surface to establish electronic structure contrast on a short length scale. Our measurements achieve a...

  • Evidence of diffusion characteristics of field emission electrons in nanostructuring process on graphite surface. Wang, Chen; Bai, Chunli; Li, Xiaodong; Shang, Guangyi; Lee, Imshik; Wang, Xinwen; Qiu, Xiaohui; Tian, Fang // Applied Physics Letters;7/15/1996, Vol. 69 Issue 3, p348 

    The characteristics of the nanostructure on the surface of highly oriented pyrolytic graphite (HOPG) involving field emitted electrons is examined with scanning tunneling microscopy (STM). A simple model based on the continuum electron diffusion is proposed and is compared with the experimental...


Read the Article


Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics