TITLE

Strategic leukocyte depletion reduces pulmonary microvascular pressure and improves pulmonary status post-cardiopulmonary bypass

AUTHOR(S)
Olivencia-Yurvati, AH; Ferrara, CA; Tierney, N; Wallace, N; Mallet, RT
PUB. DATE
March 2003
SOURCE
Perfusion;Mar2003 Supplement, Vol. 18, p23
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Cardiopulmonary bypass (CPB) precipitates inflammation that causes marked pulmonary dysfunction. Leukocyte filtration has been proposed to reduce these deleterious effects. Other studies show an improvement with aprotinin. We proposed that a combination of these two therapies would synergistically improve pulmonary outcomes. Two hundred and twenty-five patients participated in a randomized prospective study comparing pulmonary microvascular function and pulmonary shunt fraction postcoronary artery bypass grafting (CABG). The study group underwent leukocyte depletion with aprotinin during the procedure. Pulmonary microvascular function was assessed by pulmonary microvascular pressure (PMVP), a measure of pulmonary capillary edema, and pulmonary function was evaluated by comparing pulmonary shunt fractions. Elevated PMVP and increased pulmonary shunting compromise pulmonary performance. The leukocyte-depleted group had significantly reduced PMVP and pulmonary shunt fraction for at least the first 24 hours postbypass. The combination of strategic leukocyte filtration and aprotinin therapy can effectively reduce postoperative decline in pulmonary function. Cardiopulmonary bypass precipitates a variety of inflammatory effects that can cause marked pulmonary dysfunction to the point of respiratory failure, necessitating prolonged mechanical ventilation. Leukocyte filtration has been investigated previously and appears to be beneficial in improving pulmonary outcome by preventing direct neutrophil-induced inflammatory injury. Recent studies of leukocyte reduction profiles suggest that leukoreduction via leukofiltration is short lived with filter saturation occurring 30-45 minutes after onset of filtration. This phenomenon may explain the limited utility observed with higher risk patients. These patients typically require longer pump runs, so leukocyte reduction capability is suboptimal at the time of pulmonary vascular reperfusion. To more effectively protect the lung...
ACCESSION #
10051397

 

Share

Read the Article

Courtesy of THE LIBRARY OF VIRGINIA

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics