TITLE

Effects due to disorder on photonic crystal-based waveguides

AUTHOR(S)
Kwan, Kai-Chong; Zhang, Xiangdong; Zhang, Zhao-Qing; Chan, C. T.
PUB. DATE
June 2003
SOURCE
Applied Physics Letters;6/23/2003, Vol. 82 Issue 25, p4414
SOURCE TYPE
Academic Journal
DOC. TYPE
Article
ABSTRACT
Using the multiple-scattering method, we have studied the effects of various types of disorders on the performance of two-dimensional photonic crystal-based waveguides with cylindrical inclusions. The following three types of disorders are considered: (a) all cylinders are disordered; (b) only those cylinders in the boundary layer of the waveguide are disordered; and (c) all cylinders except those in the boundary layer of the waveguide are disordered. Our results show that, for both the cases of position and size randomness, the quality of the waveguide is insensitive to the type-(c) disorder, but very sensitive to type-(a) and type-(b) disorder. We thus conclude that the uniformity of the microstructures in the boundary layer of the waveguide is vital in ensuring the functionality of the waveguide.
ACCESSION #
10024456

 

Related Articles

  • Propagation of light beams along line defects formed in a-Si/SiO[sub 2] three-dimensional... Hanaizumi, Osamu; Ohtera, Yasuo; Sato, Takashi; Kawakami, Shojiro // Applied Physics Letters;2/8/1999, Vol. 74 Issue 6, p777 

    Studies optical waveguides in three-dimensional photonic crystals. Propagation of light beams; Structural characteristics of the crystals; Formation of line defects; Measurements of transmittance; Agreement of measurements with finite-difference time-domain calculations.

  • High-contrast all-optical bistable switching in photonic crystal microcavities. Mehmet Fatih Yanik, L.J.; Shanhu Fan, L.J.; Soljačić, Marin // Applied Physics Letters;10/6/2003, Vol. 83 Issue 14, p2739 

    We present a bistable photonic crystal configuration consisting of a waveguide sided coupled to a single-mode cavity with instantaneous Kerr nonlinearity. We show that such a configuration can generate extremely high contrast between the bistable states in its transmission with low input power....

  • Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide. Tokushima, Masatoshi; Kosaka, Hideo; Tomita, Akihisa; Yamada, Hirohito // Applied Physics Letters;2/21/2000, Vol. 76 Issue 8 

    We have demonstrated 1.55 μm wavelength lightwave propagation through a 120° sharply bent waveguide formed in a triangular-lattice two-dimensional photonic crystal (2D PC). Such propagation has not previously been experimentally confirmed. The photonic crystal was fabricated in a...

  • Waveguiding in planar photonic crystals. Loncar, Marko; Nedeljkovic, Dusan; Doll, Theodor; Vuckovic, Jelena; Scherer, Axel; Pearsall, Thomas P. // Applied Physics Letters;9/25/2000, Vol. 77 Issue 13 

    Photonic crystal planar circuits designed and fabricated in silicon on silicon dioxide are demonstrated. Our structures are based on two-dimensional confinement by photonic crystals in the plane of propagation, and total internal reflection to achieve confinement in the third dimension. These...

  • Experimental demonstration of photonic crystal based waveguides. Temelkuran, B.; Ozbay, E. // Applied Physics Letters;1/25/1999, Vol. 74 Issue 4, p486 

    Studies the experimental demonstration of wave guides built around layer-by-layer photonic crystals. Basic motivation in photonic crystal-based waveguides; Transmission of electromagnetic waves through planar waveguide structures within the frequency range of the photonic band gap; Dispersion...

  • Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs. Lau, Wah Tung; Fan, Shanhui // Applied Physics Letters;11/18/2002, Vol. 81 Issue 21, p3915 

    We introduce a general designing procedure that allows us, for any given photonic crystal slab, to create an appropriate line defect structure that possesses single-mode bands with large bandwidth and low dispersion within the photonic band-gap region below the light line. This procedure...

  • Low-loss channel waveguides with two-dimensional photonic crystal boundaries. Smith, C. J. M.; Benisty, H.; Olivier, S.; Rattier, M.; Weisbuch, C.; Krauss, T. F.; De La Rue, R. M.; Houdré, R.; Oesterle, U. // Applied Physics Letters;10/30/2000, Vol. 77 Issue 18 

    We have used transmission measurements to estimate the propagation loss of submicron channels defined in two-dimensional photonic crystals patterned into a Ga(Al)As waveguide. The measured propagation loss of the fundamental mode is indistinguishable from the material absorption, setting an...

  • Propagation losses of the fundamental mode in a single line-defect photonic crystal waveguide on an InP membrane. De´sie`res, Y.; Benyattou, T.; Orobtchouk, R.; Morand, A.; Benech, P.; Grillet, C.; Seassal, C.; Letartre, X.; Rojo-Romeo, P.; Viktorovitch, P. // Journal of Applied Physics;9/1/2002, Vol. 92 Issue 5, p2227 

    We have investigated light propagation through a single line-defect photonic crystal waveguide on a InP membrane. Modal analysis was performed using the finite-difference time-domain method. The fundamental mode has been found to be very close to the fundamental mode in a "refractive" waveguide...

  • Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals. Dinu, M.; Willett, R. L.; Baldwin, K.; Pfeiffer, L. N.; West, K. W. // Applied Physics Letters;12/1/2003, Vol. 83 Issue 22, p4471 

    In transmission studies of two-dimensional AlGaAs-based photonic crystal waveguide structures, we demonstrate high coupling efficiencies from ridge waveguides to photonic crystal waveguides using photonic crystal waveguide tapers. Enhanced bending efficiencies and bend bandwidths are achieved by...

Share

Read the Article

Courtesy of VIRGINIA BEACH PUBLIC LIBRARY AND SYSTEM

Sorry, but this item is not currently available from your library.

Try another library?
Sign out of this library

Other Topics